Scalability Definition - Investopedia

Since they're calling for r/btc to be banned...

Maybe it's time to discuss bitcoin's history again. Credit to u/singularity87 for the original post over 3 years ago.

People should get the full story of bitcoin because it is probably one of the strangest of all reddit subs.
bitcoin, the main sub for the bitcoin community is held and run by a person who goes by the pseudonym u/theymos. Theymos not only controls bitcoin, but also bitcoin.org and bitcointalk.com. These are top three communication channels for the bitcoin community, all controlled by just one person.
For most of bitcoin's history this did not create a problem (at least not an obvious one anyway) until around mid 2015. This happened to be around the time a new player appeared on the scene, a for-profit company called Blockstream. Blockstream was made up of/hired many (but not all) of the main bitcoin developers. (To be clear, Blockstream was founded before mid 2015 but did not become publicly active until then). A lot of people, including myself, tried to point out there we're some very serious potential conflicts of interest that could arise when one single company controls most of the main developers for the biggest decentralised and distributed cryptocurrency. There were a lot of unknowns but people seemed to give them the benefit of the doubt because they were apparently about to release some new software called "sidechains" that could offer some benefits to the network.
Not long after Blockstream came on the scene the issue of bitcoin's scalability once again came to forefront of the community. This issue came within the community a number of times since bitcoins inception. Bitcoin, as dictated in the code, cannot handle any more than around 3 transactions per second at the moment. To put that in perspective Paypal handles around 15 transactions per second on average and VISA handles something like 2000 transactions per second. The discussion in the community has been around how best to allow bitcoin to scale to allow a higher number of transactions in a given amount of time. I suggest that if anyone is interested in learning more about this problem from a technical angle, they go to btc and do a search. It's a complex issue but for many who have followed bitcoin for many years, the possible solutions seem relatively obvious. Essentially, currently the limit is put in place in just a few lines of code. This was not originally present when bitcoin was first released. It was in fact put in place afterwards as a measure to stop a bloating attack on the network. Because all bitcoin transactions have to be stored forever on the bitcoin network, someone could theoretically simply transmit a large number of transactions which would have to be stored by the entire network forever. When bitcoin was released, transactions were actually for free as the only people running the network were enthusiasts. In fact a single bitcoin did not even have any specific value so it would be impossible set a fee value. This meant that a malicious person could make the size of the bitcoin ledger grow very rapidly without much/any cost which would stop people from wanting to join the network due to the resource requirements needed to store it, which at the time would have been for very little gain.
Towards the end of the summer last year, this bitcoin scaling debate surfaced again as it was becoming clear that the transaction limit for bitcoin was semi regularly being reached and that it would not be long until it would be regularly hit and the network would become congested. This was a very serious issue for a currency. Bitcoin had made progress over the years to the point of retailers starting to offer it as a payment option. Bitcoin companies like, Microsoft, Paypal, Steam and many more had began to adopt it. If the transaction limit would be constantly maxed out, the network would become unreliable and slow for users. Users and businesses would not be able to make a reliable estimate when their transaction would be confirmed by the network.
Users, developers and businesses (which at the time was pretty much the only real bitcoin subreddit) started to discuss how we should solve the problem bitcoin. There was significant support from the users and businesses behind a simple solution put forward by the developer Gavin Andreesen. Gavin was the lead developer after Satoshi Nakamoto left bitcoin and he left it in his hands. Gavin initially proposed a very simple solution of increasing the limit which was to change the few lines of code to increase the maximum number of transactions that are allowed. For most of bitcoin's history the transaction limit had been set far far higher than the number of transactions that could potentially happen on the network. The concept of increasing the limit one time was based on the fact that history had proven that no issue had been cause by this in the past.
A certain group of bitcoin developers decided that increasing the limit by this amount was too much and that it was dangerous. They said that the increased use of resources that the network would use would create centralisation pressures which could destroy the network. The theory was that a miner of the network with more resources could publish many more transactions than a competing small miner could handle and therefore the network would tend towards few large miners rather than many small miners. The group of developers who supported this theory were all developers who worked for the company Blockstream. The argument from people in support of increasing the transaction capacity by this amount was that there are always inherent centralisation pressure with bitcoin mining. For example miners who can access the cheapest electricity will tend to succeed and that bigger miners will be able to find this cheaper electricity easier. Miners who have access to the most efficient computer chips will tend to succeed and that larger miners are more likely to be able to afford the development of them. The argument from Gavin and other who supported increasing the transaction capacity by this method are essentially there are economies of scale in mining and that these economies have far bigger centralisation pressures than increased resource cost for a larger number of transactions (up to the new limit proposed). For example, at the time the total size of the blockchain was around 50GB. Even for the cost of a 500GB SSD is only $150 and would last a number of years. This is in-comparison to the $100,000's in revenue per day a miner would be making.
Various developers put forth various other proposals, including Gavin Andresen who put forth a more conservative increase that would then continue to increase over time inline with technological improvements. Some of the employees of blockstream also put forth some proposals, but all were so conservative, it would take bitcoin many decades before it could reach a scale of VISA. Even though there was significant support from the community behind Gavin's simple proposal of increasing the limit it was becoming clear certain members of the bitcoin community who were part of Blockstream were starting to become increasingly vitriolic and divisive. Gavin then teamed up with one of the other main bitcoin developers Mike Hearn and released a coded (i.e. working) version of the bitcoin software that would only activate if it was supported by a significant majority of the network. What happened next was where things really started to get weird.
After this free and open source software was released, Theymos, the person who controls all the main communication channels for the bitcoin community implemented a new moderation policy that disallowed any discussion of this new software. Specifically, if people were to discuss this software, their comments would be deleted and ultimately they would be banned temporarily or permanently. This caused chaos within the community as there was very clear support for this software at the time and it seemed our best hope for finally solving the problem and moving on. Instead a censorship campaign was started. At first it 'all' they were doing was banning and removing discussions but after a while it turned into actively manipulating the discussion. For example, if a thread was created where there was positive sentiment for increasing the transaction capacity or being negative about the moderation policies or negative about the actions of certain bitcoin developers, the mods of bitcoin would selectively change the sorting order of threads to 'controversial' so that the most support opinions would be sorted to the bottom of the thread and the most vitriolic would be sorted to the top of the thread. This was initially very transparent as it was possible to see that the most downvoted comments were at the top and some of the most upvoted were at the bottom. So they then implemented hiding the voting scores next to the users name. This made impossible to work out the sentiment of the community and when combined with selectively setting the sorting order to controversial it was possible control what information users were seeing. Also, due to the very very large number of removed comments and users it was becoming obvious the scale of censorship going on. To hide this they implemented code in their CSS for the sub that completely hid comments that they had removed so that the censorship itself was hidden. Anyone in support of scaling bitcoin were removed from the main communication channels. Theymos even proudly announced that he didn't care if he had to remove 90% of the users. He also later acknowledged that he knew he had the ability to block support of this software using the control he had over the communication channels.
While this was all going on, Blockstream and it's employees started lobbying the community by paying for conferences about scaling bitcoin, but with the very very strange rule that no decisions could be made and no complete solutions could be proposed. These conferences were likely strategically (and successfully) created to stunt support for the scaling software Gavin and Mike had released by forcing the community to take a "lets wait and see what comes from the conferences" kind of approach. Since no final solutions were allowed at these conferences, they only served to hinder and splinter the communities efforts to find a solution. As the software Gavin and Mike released called BitcoinXT gained support it started to be attacked. Users of the software were attack by DDOS. Employees of Blockstream were recommending attacks against the software, such as faking support for it, to only then drop support at the last moment to put the network in disarray. Blockstream employees were also publicly talking about suing Gavin and Mike from various different angles simply for releasing this open source software that no one was forced to run. In the end Mike Hearn decided to leave due to the way many members of the bitcoin community had treated him. This was due to the massive disinformation campaign against him on bitcoin. One of the many tactics that are used against anyone who does not support Blockstream and the bitcoin developers who work for them is that you will be targeted in a smear campaign. This has happened to a number of individuals and companies who showed support for scaling bitcoin. Theymos has threatened companies that he will ban any discussion of them on the communication channels he controls (i.e. all the main ones) for simply running software that he disagrees with (i.e. any software that scales bitcoin).
As time passed, more and more proposals were offered, all against the backdrop of ever increasing censorship in the main bitcoin communication channels. It finally come down the smallest and most conservative solution. This solution was much smaller than even the employees of Blockstream had proposed months earlier. As usual there was enormous attacks from all sides and the most vocal opponents were the employees of Blockstream. These attacks still are ongoing today. As this software started to gain support, Blockstream organised more meetings, especially with the biggest bitcoin miners and made a pact with them. They promised that they would release code that would offer an on-chain scaling solution hardfork within about 4 months, but if the miners wanted this they would have to commit to running their software and only their software. The miners agreed and the ended up not running the most conservative proposal possible. This was in February last year. There is no hardfork proposal in sight from the people who agreed to this pact and bitcoin is still stuck with the exact same transaction limit it has had since the limit was put in place about 6 years ago. Gavin has also been publicly smeared by the developers at Blockstream and a plot was made against him to have him removed from the development team. Gavin has now been, for all intents an purposes, expelled from bitcoin development. This has meant that all control of bitcoin development is in the hands of the developers working at Blockstream.
There is a new proposal that offers a market based approach to scaling bitcoin. This essentially lets the market decide. Of course, as usual there has been attacks against it, and verbal attacks from the employees of Blockstream. This has the biggest chance of gaining wide support and solving the problem for good.
To give you an idea of Blockstream; It has hired most of the main and active bitcoin developers and is now synonymous with the "Core" bitcoin development team. They AFAIK no products at all. They have received around $75m in funding. Every single thing they do is supported by theymos. They have started implementing an entirely new economic system for bitcoin against the will of it's users and have blocked any and all attempts to scaling the network in line with the original vision.
Although this comment is ridiculously long, it really only covers the tip of the iceberg. You could write a book on the last two years of bitcoin. The things that have been going on have been mind blowing. One last thing that I think is worth talking about is the u/bashco's claim of vote manipulation.
The users that the video talks about have very very large numbers of downvotes mostly due to them having a very very high chance of being astroturfers. Around about the same time last year when Blockstream came active on the scene every single bitcoin troll disappeared, and I mean literally every single one. In the years before that there were a large number of active anti-bitcoin trolls. They even have an active sub buttcoin. Up until last year you could go down to the bottom of pretty much any thread in bitcoin and see many of the usual trolls who were heavily downvoted for saying something along the lines of "bitcoin is shit", "You guys and your tulips" etc. But suddenly last year they all disappeared. Instead a new type of bitcoin user appeared. Someone who said they were fully in support of bitcoin but they just so happened to support every single thing Blockstream and its employees said and did. They had the exact same tone as the trolls who had disappeared. Their way to talking to people was aggressive, they'd call people names, they had a relatively poor understanding of how bitcoin fundamentally worked. They were extremely argumentative. These users are the majority of the list of that video. When the 10's of thousands of users were censored and expelled from bitcoin they ended up congregating in btc. The strange thing was that the users listed in that video also moved over to btc and spend all day everyday posting troll-like comments and misinformation. Naturally they get heavily downvoted by the real users in btc. They spend their time constantly causing as much drama as possible. At every opportunity they scream about "censorship" in btc while they are happy about the censorship in bitcoin. These people are astroturfers. What someone somewhere worked out, is that all you have to do to take down a community is say that you are on their side. It is an astoundingly effective form of psychological attack.
submitted by CuriousTitmouse to btc [link] [comments]

Diamond in the rough forks to Blockcore tech. Solid 10x short term.

Meet x42 Protocol, the feeless blockchain that will allow anyone to host decentralized applications the easy way.
X42 Protocol Price $0.01275764
Market Cap $247,173 (May 27, 2020)
Explorer: https://explorer.x42.tech/
Website: https://www.x42.tech/
x42 is a decentralized cryptocurrency based on the Blockcore technology designed to be a multi-chain solution for DApps (decentralized applications) that allows for a range that goes anywhere from small indie developed games to large entrepreneurial projects that span dozens of facilities.
The main idea behind x42 is to be a scalable, on-chain solution for any developer that wants to launch games and applications in general with minimal initial investment, zero transaction fees and near infinite scalability.
The protocol works around a main blockchain which hosts all the x42 coins and three types of nodes. Side blockchains can be created at will by the developers that decide to use the x42 protocol to launch their projects, side blockchains are very flexible and allow for a great deal of customization.
The main blockchain of the x42 protocol will have a maximum total of forty-two million coins mined into existence by the year 2030. The coins follow the same rules as most cryptocurrencies, every transaction is final, timestamped and will be registered to the blockchain ledger, blockchain explorers can be used to browse any and all transactions
Every project can have its own side blockchain, in which the development team can fully test and experiment on before going live to the store, because of that need all side blockchains have access to individual testnets.
FM Interview with developer:
The workpaper talks about using Stratis technology - Many say this is soon to be defunct?
It does, the current WP is the 1st itteration, we have a 2.0 that will be released when the servers go online.
However in Dec 2019, we have switched to Blockcore as Stratis had too many limitations that didn't meet our needs without heavy modifications. We did start with stratis as the basic framework, but we modified all of the code thus far to meet the needs we have. x42 is not stratis, but did start with some of their code.
The switch to blockcore is really more of a code thing and not otherwise noticed on the user end. There has been some but not a significant amount of discussion about it. Anyone that does access the new beta will be able to notice the difference as it nolonger will say stratis anywhere. On the user end, some file structures may change with mention of blockcore.
Blockcore is a fork of Stratis, however the cool thing is that it isnt its own project.
More details:
https://www.blockcore.net/ is an open source project started by a group of blockchain developers and engineers to realize a fully integrated platform for building custom blockchains.
Blockcore is the foundation for realizing blockchains and includes core functionality to create your own custom blockchain with a lot of tooling supporting your blockchain.
So its been 18 months of development? When will we say a mainnet?
We are currently in testnet and close to 90% ready. Xservers should be released this year. However we are not working on a timeline for mainnet with dates at the moment. Deadlines produce inferior products. The new wallet (xCore) has passed and is ready, it will work alongside the xServer. The switch to blockcore did require some code changes and we are still working with blockcore to fine tune some issues in their code as well. Security and ease of use for the end user are required.
What about use of dapps in beta?
We have a few in progress, but there are not many as the parameters can be changing. Although, anyone that can code a dapp in c# could drop it into their app folder and have one right now. There just won't be the user interface on the current wallet or the server support yet.
Why did you call it x42?
X has always been the universal unknown in mathematics, which can also mean ‘anything.’
X is believed to have come from the arab letter shin (ش),
that was initially used by spanish scholars because of their inability to translate certain arabic sounds into the spanish language, so it became a synonym for an unknown thing. From there on it was noticed that the spanish language didn’t have an appropriate sound for the arabic ‘sh.’ As time passed it was adapted into the ‘ck’ sound, which in classic greek is written down with a symbol known as chi (X). 42 is known to Douglas Adams’ The Hitchhiker’s Guide to the Galaxy readers as the ‘answer to the ultimate question of life, the universe, and everything’. We believe that x42 can offer a great answer to most questions plaguing the cryptocurrency space at the moment and in the future. That mix of an unknown and an answer is where our name got its origin.
The techy Details:
The two main levels of the x42 architecture are:
xCore – This is responsible for interacting with the infrastructure and the interface layers in addition to the node policy layers. An x42 xCore full node handles all the APIs and user interfaces.
NBitcoin – This is responsible for handling messages between nodes in the Network Layer. It also bridges the gap between various Consensus Layer functions.
Higher Transaction Speed: Transaction on the x42 blockchain platform happens almost instantly under 60 seconds. Also, the main x42 blockchain supports around 70 transactions per second. This is nearly 10 times the transactions supported by the Bitcoin blockchain network. Additionally, the good thing is the x42 side blockchains can be edited to hold as many transactions-per-second (TPS) as the developers want.
Understanding xCore, xServer, and Wallets
xCore – An xCore node is basically a device with software that has the entire x42 blockchain saved and connects the main blockchain to the side blockchains. This node seeds the main and side blockchain to all users and also has all the functionalities of a client node. Client node is any client running a wallet connected to the x42 main blockchain network.
As explained in the white-paper, “The xCore can stake coins on the main blockchain, it can also run decentralised applications hosted on xServers all across the network after having it installed on the local machine”.
xServer – The x42 blockchain supports several different types of servers. xServer is a special sort of wallet that runs on dedicated hardware facilitates decentralisation of applications (DApps), processing and data storage.
xServers are also tasked with other activities on the network like propagating smart contracts and signing transactions. It also allows the server owner (the Gatekeeper) to get paid for hosting diverse applications.
Besides, xServers can choose to host the projects launched on any of the non-private side blockchains. Projects that share a considerable part of their revenues with the xServer owners are likely to get hosted quickly and maintained by the same servers for a longer period of time.
Before we understand xServer wallets, let’s brief about the Hot Wallet and Cold Wallets.
A hot wallet is an online wallet always connected to the internet. This is an instant point-of-contact for receiving and sending payments. The hot wallets receive the staking rewards along with payouts from DApps, side blockchain, smart contracts, and private transactions.
A cold wallet is an offline wallet and more secure from the hot wallet as it is less susceptible to online attacks. This wallet holds the collateral for the server. All the server rewards are paid out to the cold storage wallet.
Coming to the xServer wallets, these are basically software holding information for both hot and cold storage wallets. The xServer wallets can run on almost any operating system. They can also host and launch decentralised applications (DApps) and generate passive income by DApp hosting.
Nice article..
https://medium.com/the-consensus/x42-protocol-not-just-another-pos-mn-project-d8dd73e8846d
submitted by AlfredGemLord to CryptoMoonShots [link] [comments]

FlowCards: A Declarative Framework for Development of Ergo dApps

FlowCards: A Declarative Framework for Development of Ergo dApps
Introduction
ErgoScript is the smart contract language used by the Ergo blockchain. While it has concise syntax adopted from Scala/Kotlin, it still may seem confusing at first because conceptually ErgoScript is quite different compared to conventional languages which we all know and love. This is because Ergo is a UTXO based blockchain, whereas smart contracts are traditionally associated with account based systems like Ethereum. However, Ergo's transaction model has many advantages over the account based model and with the right approach it can even be significantly easier to develop Ergo contracts than to write and debug Solidity code.
Below we will cover the key aspects of the Ergo contract model which makes it different:
Paradigm
The account model of Ethereum is imperative. This means that the typical task of sending coins from Alice to Bob requires changing the balances in storage as a series of operations. Ergo's UTXO based programming model on the other hand is declarative. ErgoScript contracts specify conditions for a transaction to be accepted by the blockchain (not changes to be made in the storage state as result of the contract execution).
Scalability
In the account model of Ethereum both storage changes and validity checks are performed on-chain during code execution. In contrast, Ergo transactions are created off-chain and only validation checks are performed on-chain thus reducing the amount of operations performed by every node on the network. In addition, due to immutability of the transaction graph, various optimization strategies are possible to improve throughput of transactions per second in the network. Light verifying nodes are also possible thus further facilitating scalability and accessibility of the network.
Shared state
The account-based model is reliant on shared mutable state which is known to lead to complex semantics (and subtle million dollar bugs) in the context of concurrent/ distributed computation. Ergo's model is based on an immutable graph of transactions. This approach, inherited from Bitcoin, plays well with the concurrent and distributed nature of blockchains and facilitates light trustless clients.
Expressive Power
Ethereum advocated execution of a turing-complete language on the blockchain. It theoretically promised unlimited potential, however in practice severe limitations came to light from excessive blockchain bloat, subtle multi-million dollar bugs, gas costs which limit contract complexity, and other such problems. Ergo on the flip side extends UTXO to enable turing-completeness while limiting the complexity of the ErgoScript language itself. The same expressive power is achieved in a different and more semantically sound way.
With the all of the above points, it should be clear that there are a lot of benefits to the model Ergo is using. In the rest of this article I will introduce you to the concept of FlowCards - a dApp developer component which allows for designing complex Ergo contracts in a declarative and visual way.
From Imperative to Declarative
In the imperative programming model of Ethereum a transaction is a sequence of operations executed by the Ethereum VM. The following Solidity function implements a transfer of tokens from sender to receiver . The transaction starts when sender calls this function on an instance of a contract and ends when the function returns.
// Sends an amount of existing coins from any caller to an address function send(address receiver, uint amount) public { require(amount <= balances[msg.sender], "Insufficient balance."); balances[msg.sender] -= amount; balances[receiver] += amount; emit Sent(msg.sender, receiver, amount); } 
The function first checks the pre-conditions, then updates the storage (i.e. balances) and finally publishes the post-condition as the Sent event. The gas which is consumed by the transaction is sent to the miner as a reward for executing this transaction.
Unlike Ethereum, a transaction in Ergo is a data structure holding a list of input coins which it spends and a list of output coins which it creates preserving the total balances of ERGs and tokens (in which Ergo is similar to Bitcoin).
Turning back to the example above, since Ergo natively supports tokens, therefore for this specific example of sending tokens we don't need to write any code in ErgoScript. Instead we need to create the ‘send’ transaction shown in the following figure, which describes the same token transfer but declaratively.
https://preview.redd.it/id5kjdgn9tv41.png?width=1348&format=png&auto=webp&s=31b937d7ad0af4afe94f4d023e8c90c97c8aed2e
The picture visually describes the following steps, which the network user needs to perform:
  1. Select unspent sender's boxes, containing in total tB >= amount of tokens and B >= txFee + minErg ERGs.
  2. Create an output target box which is protected by the receiver public key with minErg ERGs and amount of T tokens.
  3. Create one fee output protected by the minerFee contract with txFee ERGs.
  4. Create one change output protected by the sender public key, containing B - minErg - txFee ERGs and tB - amount of T tokens.
  5. Create a new transaction, sign it using the sender's secret key and send to the Ergo network.
What is important to understand here is that all of these steps are preformed off-chain (for example using Appkit Transaction API) by the user's application. Ergo network nodes don't need to repeat this transaction creation process, they only need to validate the already formed transaction. ErgoScript contracts are stored in the inputs of the transaction and check spending conditions. The node executes the contracts on-chain when the transaction is validated. The transaction is valid if all of the conditions are satisfied.
Thus, in Ethereum when we “send amount from sender to recipient” we are literally editing balances and updating the storage with a concrete set of commands. This happens on-chain and thus a new transaction is also created on-chain as the result of this process.
In Ergo (as in Bitcoin) transactions are created off-chain and the network nodes only verify them. The effects of the transaction on the blockchain state is that input coins (or Boxes in Ergo's parlance) are removed and output boxes are added to the UTXO set.
In the example above we don't use an ErgoScript contract but instead assume a signature check is used as the spending pre-condition. However in more complex application scenarios we of course need to use ErgoScript which is what we are going to discuss next.
From Changing State to Checking Context
In the send function example we first checked the pre-condition (require(amount <= balances[msg.sender],...) ) and then changed the state (i.e. update balances balances[msg.sender] -= amount ). This is typical in Ethereum transactions. Before we change anything we need to check if it is valid to do so.
In Ergo, as we discussed previously, the state (i.e. UTXO set of boxes) is changed implicitly when a valid transaction is included in a block. Thus we only need to check the pre-conditions before the transaction can be added to the block. This is what ErgoScript contracts do.
It is not possible to “change the state” in ErgoScript because it is a language to check pre-conditions for spending coins. ErgoScript is a purely functional language without side effects that operates on immutable data values. This means all the inputs, outputs and other transaction parameters available in a script are immutable. This, among other things, makes ErgoScript a very simple language that is easy to learn and safe to use. Similar to Bitcoin, each input box contains a script, which should return the true value in order to 1) allow spending of the box (i.e. removing from the UTXO set) and 2) adding the transaction to the block.
If we are being pedantic, it is therefore incorrect (strictly speaking) to think of ErgoScript as the language of Ergo contracts, because it is the language of propositions (logical predicates, formulas, etc.) which protect boxes from “illegal” spending. Unlike Bitcoin, in Ergo the whole transaction and a part of the current blockchain context is available to every script. Therefore each script may check which outputs are created by the transaction, their ERG and token amounts (we will use this capability in our example DEX contracts), current block number etc.
In ErgoScript you define the conditions of whether changes (i.e. coin spending) are allowed to happen in a given context. This is in contrast to programming the changes imperatively in the code of a contract.
While Ergo's transaction model unlocks a whole range of applications like (DEX, DeFi Apps, LETS, etc), designing contracts as pre-conditions for coin spending (or guarding scripts) directly is not intuitive. In the next sections we will consider a useful graphical notation to design contracts declaratively using FlowCard Diagrams, which is a visual representation of executable components (FlowCards).
FlowCards aim to radically simplify dApp development on the Ergo platform by providing a high-level declarative language, execution runtime, storage format and a graphical notation.
We will start with a high level of diagrams and go down to FlowCard specification.
FlowCard Diagrams
The idea behind FlowCard diagrams is based on the following observations: 1) An Ergo box is immutable and can only be spent in the transaction which uses it as an input. 2) We therefore can draw a flow of boxes through transactions, so that boxes flowing in to the transaction are spent and those flowing out are created and added to the UTXO. 3) A transaction from this perspective is simply a transformer of old boxes to the new ones preserving the balances of ERGs and tokens involved.
The following figure shows the main elements of the Ergo transaction we've already seen previously (now under the name of FlowCard Diagram).
https://preview.redd.it/9kcxl11o9tv41.png?width=1304&format=png&auto=webp&s=378a7f50769292ca94de35ff597dc1a44af56d14
There is a strictly defined meaning (semantics) behind every element of the diagram, so that the diagram is a visual representation (or a view) of the underlying executable component (called FlowCard).
The FlowCard can be used as a reusable component of an Ergo dApp to create and initiate the transaction on the Ergo blockchain. We will discuss this in the coming sections.
Now let's look at the individual pieces of the FlowCard diagram one by one.
  1. Name and Parameters
Each flow card is given a name and a list of typed parameters. This is similar to a template with parameters. In the above figure we can see the Send flow card which has five parameters. The parameters are used in the specification.
  1. Contract Wallet
This is a key element of the flow card. Every box has a guarding script. Often it is the script that checks a signature against a public key. This script is trivial in ErgoScript and is defined like the def pk(pubkey: Address) = { pubkey } template where pubkey is a parameter of the type Address . In the figure, the script template is applied to the parameter pk(sender) and thus a concrete wallet contract is obtained. Therefore pk(sender) and pk(receiver) yield different scripts and represent different wallets on the diagram, even though they use the same template.
Contract Wallet contains a set of all UTXO boxes which have a given script derived from the given script template using flow card parameters. For example, in the figure, the template is pk and parameter pubkey is substituted with the `sender’ flow card parameter.
  1. Contract
Even though a contract is a property of a box, on the diagram we group the boxes by their contracts, therefore it looks like the boxes belong to the contracts, rather than the contracts belong to the boxes. In the example, we have three instantiated contracts pk(sender) , pk(receiver) and minerFee . Note, that pk(sender) is the instantiation of the pk template with the concrete parameter sender and minerFee is the instantiation of the pre-defined contract which protects the miner reward boxes.
  1. Box name
In the diagram we can give each box a name. Besides readability of the diagram, we also use the name as a synonym of a more complex indexed access to the box in the contract. For example, change is the name of the box, which can also be used in the ErgoScript conditions instead of OUTPUTS(2) . We also use box names to associate spending conditions with the boxes.
  1. Boxes in the wallet
In the diagram, we show boxes (darker rectangles) as belonging to the contract wallets (lighter rectangles). Each such box rectangle is connected with a grey transaction rectangle by either orange or green arrows or both. An output box (with an incoming green arrow) may include many lines of text where each line specifies a condition which should be checked as part of the transaction. The first line specifies the condition on the amount of ERG which should be placed in the box. Other lines may take one of the following forms:
  1. amount: TOKEN - the box should contain the given amount of the given TOKEN
  2. R == value - the box should contain the given value of the given register R
  3. boxName ? condition - the box named boxName should check condition in its script.
We discuss these conditions in the sections below.
  1. Amount of ERGs in the box
Each box should store a minimum amount of ERGs. This is checked when the creating transaction is validated. In the diagram the amount of ERGs is always shown as the first line (e.g. B: ERG or B - minErg - txFee ). The value type ascription B: ERG is optional and may be used for readability. When the value is given as a formula, then this formula should be respected by the transaction which creates the box.
It is important to understand that variables like amount and txFee are not named properties of the boxes. They are parameters of the whole diagram and representing some amounts. Or put it another way, they are shared parameters between transactions (e.g. Sell Order and Swap transactions from DEX example below share the tAmt parameter). So the same name is tied to the same value throughout the diagram (this is where the tooling would help a lot). However, when it comes to on-chain validation of those values, only explicit conditions which are marked with ? are transformed to ErgoScript. At the same time, all other conditions are ensured off-chain during transaction building (for example in an application using Appkit API) and transaction validation when it is added to the blockchain.
  1. Amount of T token
A box can store values of many tokens. The tokens on the diagram are named and a value variable may be associated with the token T using value: T expression. The value may be given by formula. If the formula is prefixed with a box name like boxName ? formula , then it is should also be checked in the guarding script of the boxName box. This additional specification is very convenient because 1) it allows to validate the visual design automatically, and 2) the conditions specified in the boxes of a diagram are enough to synthesize the necessary guarding scripts. (more about this below at “From Diagrams To ErgoScript Contracts”)
  1. Tx Inputs
Inputs are connected to the corresponding transaction by orange arrows. An input arrow may have a label of the following forms:
  1. [email protected] - optional name with an index i.e. [email protected] or u/2 . This is a property of the target endpoint of the arrow. The name is used in conditions of related boxes and the index is the position of the corresponding box in the INPUTS collection of the transaction.
  2. !action - is a property of the source of the arrow and gives a name for an alternative spending path of the box (we will see this in DEX example)
Because of alternative spending paths, a box may have many outgoing orange arrows, in which case they should be labeled with different actions.
  1. Transaction
A transaction spends input boxes and creates output boxes. The input boxes are given by the orange arrows and the labels are expected to put inputs at the right indexes in INPUTS collection. The output boxes are given by the green arrows. Each transaction should preserve a strict balance of ERG values (sum of inputs == sum of outputs) and for each token the sum of inputs >= the sum of outputs. The design diagram requires an explicit specification of the ERG and token values for all of the output boxes to avoid implicit errors and ensure better readability.
  1. Tx Outputs
Outputs are connected to the corresponding transaction by green arrows. An output arrow may have a label of the following [email protected] , where an optional name is accompanied with an index i.e. [email protected] or u/2 . This is a property of the source endpoint of the arrow. The name is used in conditions of the related boxes and the index is the position of the corresponding box in the OUTPUTS collection of the transaction.
Example: Decentralized Exchange (DEX)
Now let's use the above described notation to design a FlowCard for a DEX dApp. It is simple enough yet also illustrates all of the key features of FlowCard diagrams which we've introduced in the previous section.
The dApp scenario is shown in the figure below: There are three participants (buyer, seller and DEX) of the DEX dApp and five different transaction types, which are created by participants. The buyer wants to swap ergAmt of ERGs for tAmt of TID tokens (or vice versa, the seller wants to sell TID tokens for ERGs, who sends the order first doesn't matter). Both the buyer and the seller can cancel their orders any time. The DEX off-chain matching service can find matching orders and create the Swap transaction to complete the exchange.
The following diagram fully (and formally) specifies all of the five transactions that must be created off-chain by the DEX dApp. It also specifies all of the spending conditions that should be verified on-chain.

https://preview.redd.it/fnt5f4qp9tv41.png?width=1614&format=png&auto=webp&s=34f145f9a6d622454906857e645def2faba057bd
Let's discuss the FlowCard diagram and the logic of each transaction in details:
Buy Order Transaction
A buyer creates a Buy Order transaction. The transaction spends E amount of ERGs (which we will write E: ERG ) from one or more boxes in the pk(buyer) wallet. The transaction creates a bid box with ergAmt: ERG protected by the buyOrder script. The buyOrder script is synthesized from the specification (see below at “From Diagrams To ErgoScript Contracts”) either manually or automatically by a tool. Even though we don't need to define the buyOrder script explicitly during designing, at run time the bid box should contain the buyOrder script as the guarding proposition (which checks the box spending conditions), otherwise the conditions specified in the diagram will not be checked.
The change box is created to make the input and output sums of the transaction balanced. The transaction fee box is omitted because it can be added automatically by the tools. In practice, however, the designer can add the fee box explicitly to the a diagram. It covers the cases of more complex transactions (like Swap) where there are many ways to pay the transaction fee.
Cancel Buy, Cancel Sell Transactions
At any time, the buyer can cancel the order by sending CancelBuy transaction. The transaction should satisfy the guarding buyOrder contract which protects the bid box. As you can see on the diagram, both the Cancel and the Swap transactions can spend the bid box. When a box has spending alternatives (or spending paths) then each alternative is identified by a unique name prefixed with ! (!cancel and !swap for the bid box). Each alternative path has specific spending conditions. In our example, when the Cancel Buy transaction spends the bid box the ?buyer condition should be satisfied, which we read as “the signature for the buyer address should be presented in the transaction”. Therefore, only buyer can cancel the buy order. This “signature” condition is only required for the !cancel alternative spending path and not required for !swap .
Sell Order Transaction
The Sell Order transaction is similar to the BuyOrder in that it deals with tokens in addition to ERGs. The transaction spends E: ERG and T: TID tokens from seller's wallet (specified as pk(seller) contract). The two outputs are ask and change . The change is a standard box to balance transaction. The ask box keeps tAmt: TID tokens for the exchange and minErg: ERG - the minimum amount of ERGs required in every box.
Swap Transaction
This is a key transaction in the DEX dApp scenario. The transaction has several spending conditions on the input boxes and those conditions are included in the buyOrder and sellOrder scripts (which are verified when the transaction is added to the blockchain). However, on the diagram those conditions are not specified in the bid and ask boxes, they are instead defined in the output boxes of the transaction.
This is a convention for improved usability because most of the conditions relate to the properties of the output boxes. We could specify those properties in the bid box, but then we would have to use more complex expressions.
Let's consider the output created by the arrow labeled with [email protected] . This label tells us that the output is at the index 0 in the OUTPUTS collection of the transaction and that in the diagram we can refer to this box by the buyerOut name. Thus we can label both the box itself and the arrow to give the box a name.
The conditions shown in the buyerOut box have the form bid ? condition , which means they should be verified on-chain in order to spend the bid box. The conditions have the following meaning:
  • tAmt: TID requires the box to have tAmt amount of TID token
  • R4 == bid.id requires R4 register in the box to be equal to id of the bid box.
  • script == buyer requires the buyerOut box to have the script of the wallet where it is located on the diagram, i.e. pk(buyer)
Similar properties are added to the sellerOut box, which is specified to be at index 1 and the name is given to it using the label on the box itself, rather than on the arrow.
The Swap transaction spends two boxes bid and ask using the !swap spending path on both, however unlike !cancel the conditions on the path are not specified. This is where the bid ? and ask ? prefixes come into play. They are used so that the conditions listed in the buyerOut and sellerOut boxes are moved to the !swap spending path of the bid and ask boxes correspondingly.
If you look at the conditions of the output boxes, you will see that they exactly specify the swap of values between seller's and buyer's wallets. The buyer gets the necessary amount of TID token and seller gets the corresponding amount of ERGs. The Swap transaction is created when there are two matching boxes with buyOrder and sellOrder contracts.
From Diagrams To ErgoScript Contracts
What is interesting about FlowCard specifications is that we can use them to automatically generate the necessary ErgoTree scripts. With the appropriate tooling support this can be done automatically, but with the lack of thereof, it can be done manually. Thus, the FlowCard allows us to capture and visually represent all of the design choices and semantic details of an Ergo dApp.
What we are going to do next is to mechanically create the buyOrder contract from the information given in the DEX flow card.
Recall that each script is a proposition (boolean valued expression) which should evaluate to true to allow spending of the box. When we have many conditions to be met at the same time we can combine them in a logical formula using the AND binary operation, and if we have alternatives (not necessarily exclusive) we can put them into the OR operation.
The buyOrder box has the alternative spending paths !cancel and !swap . Thus the ErgoScript code should have OR operation with two arguments - one for each spending path.
/** buyOrder contract */ { val cancelCondition = {} val swapCondition = {} cancelCondition || swapCondition } 
The formula for the cancelCondition expression is given in the !cancel spending path of the buyOrder box. We can directly include it in the script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = {} cancelCondition || swapCondition } 
For the !swap spending path of the buyOrder box the conditions are specified in the buyerOut output box of the Swap transaction. If we simply include them in the swapCondition then we get a syntactically incorrect script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = { tAmt: TID && R4 == bid.id && @contract } cancelCondition || swapCondition } 
We can however translate the conditions from the diagram syntax to ErgoScript expressions using the following simple rules
  1. [email protected] ==> val buyerOut = OUTPUTS(0)
  2. tAmt: TID ==> tid._2 == tAmt where tid = buyerOut.tokens(TID)
  3. R4 == bid.id ==> R4 == SELF.id where R4 = buyerOut.R4[Coll[Byte]].get
  4. script == buyer ==> buyerOut.propositionBytes == buyer.propBytes
Note, in the diagram TID represents a token id, but ErgoScript doesn't have access to the tokens by the ids so we cannot write tokens.getByKey(TID) . For this reason, when the diagram is translated into ErgoScript, TID becomes a named constant of the index in tokens collection of the box. The concrete value of the constant is assigned when the BuyOrder transaction with the buyOrder box is created. The correspondence and consistency between the actual tokenId, the TID constant and the actual tokens of the buyerOut box is ensured by the off-chain application code, which is completely possible since all of the transactions are created by the application using FlowCard as a guiding specification. This may sound too complicated, but this is part of the translation from diagram specification to actual executable application code, most of which can be automated.
After the transformation we can obtain a correct script which checks all the required preconditions for spending the buyOrder box.
/** buyOrder contract */ def DEX(buyer: Addrss, seller: Address, TID: Int, ergAmt: Long, tAmt: Long) { val cancelCondition: SigmaProp = { buyer } // verify buyer's sig (ProveDlog) val swapCondition = OUTPUTS.size > 0 && { // securing OUTPUTS access val buyerOut = OUTPUTS(0) // from [email protected] buyerOut.tokens.size > TID && { // securing tokens access val tid = buyerOut.tokens(TID) val regR4 = buyerOut.R4[Coll[Byte]] regR4.isDefined && { // securing R4 access val R4 = regR4.get tid._2 == tAmt && // from tAmt: TID R4 == SELF.id && // from R4 == bid.id buyerOut.propositionBytes == buyer.propBytes // from script == buyer } } } cancelCondition || swapCondition } 
A similar script for the sellOrder box can be obtained using the same translation rules. With the help of the tooling the code of contracts can be mechanically generated from the diagram specification.
Conclusions
Declarative programming models have already won the battle against imperative programming in many application domains like Big Data, Stream Processing, Deep Learning, Databases, etc. Ergo is pioneering the declarative model of dApp development as a better and safer alternative to the now popular imperative model of smart contracts.
The concept of FlowCard shifts the focus from writing ErgoScript contracts to the overall flow of values (hence the name), in such a way, that ErgoScript can always be generated from them. You will never need to look at the ErgoScript code once the tooling is in place.
Here are the possible next steps for future work:
  1. Storage format for FlowCard Spec and the corresponding EIP standardized file format (Json/XML/Protobuf). This will allow various tools (Diagram Editor, Runtime, dApps etc) to create and use *.flowcard files.
  2. FlowCard Viewer, which can generate the diagrams from *.flowcard files.
  3. FlowCard Runtime, which can run *.flowcard files, create and send transactions to Ergo network.
  4. FlowCard Designer Tool, which can simplify development of complex diagrams . This will make designing and validation of Ergo contracts a pleasant experience, more like drawing rather than coding. In addition, the correctness of the whole dApp scenario can be verified and controlled by the tooling.
submitted by Guilty_Pea to CryptoCurrencies [link] [comments]

FlowCards: A Declarative Framework for Development of Ergo dApps

FlowCards: A Declarative Framework for Development of Ergo dApps
Introduction
ErgoScript is the smart contract language used by the Ergo blockchain. While it has concise syntax adopted from Scala/Kotlin, it still may seem confusing at first because conceptually ErgoScript is quite different compared to conventional languages which we all know and love. This is because Ergo is a UTXO based blockchain, whereas smart contracts are traditionally associated with account based systems like Ethereum. However, Ergo's transaction model has many advantages over the account based model and with the right approach it can even be significantly easier to develop Ergo contracts than to write and debug Solidity code.
Below we will cover the key aspects of the Ergo contract model which makes it different:
Paradigm
The account model of Ethereum is imperative. This means that the typical task of sending coins from Alice to Bob requires changing the balances in storage as a series of operations. Ergo's UTXO based programming model on the other hand is declarative. ErgoScript contracts specify conditions for a transaction to be accepted by the blockchain (not changes to be made in the storage state as result of the contract execution).
Scalability
In the account model of Ethereum both storage changes and validity checks are performed on-chain during code execution. In contrast, Ergo transactions are created off-chain and only validation checks are performed on-chain thus reducing the amount of operations performed by every node on the network. In addition, due to immutability of the transaction graph, various optimization strategies are possible to improve throughput of transactions per second in the network. Light verifying nodes are also possible thus further facilitating scalability and accessibility of the network.
Shared state
The account-based model is reliant on shared mutable state which is known to lead to complex semantics (and subtle million dollar bugs) in the context of concurrent/ distributed computation. Ergo's model is based on an immutable graph of transactions. This approach, inherited from Bitcoin, plays well with the concurrent and distributed nature of blockchains and facilitates light trustless clients.
Expressive Power
Ethereum advocated execution of a turing-complete language on the blockchain. It theoretically promised unlimited potential, however in practice severe limitations came to light from excessive blockchain bloat, subtle multi-million dollar bugs, gas costs which limit contract complexity, and other such problems. Ergo on the flip side extends UTXO to enable turing-completeness while limiting the complexity of the ErgoScript language itself. The same expressive power is achieved in a different and more semantically sound way.
With the all of the above points, it should be clear that there are a lot of benefits to the model Ergo is using. In the rest of this article I will introduce you to the concept of FlowCards - a dApp developer component which allows for designing complex Ergo contracts in a declarative and visual way.

From Imperative to Declarative

In the imperative programming model of Ethereum a transaction is a sequence of operations executed by the Ethereum VM. The following Solidity function implements a transfer of tokens from sender to receiver . The transaction starts when sender calls this function on an instance of a contract and ends when the function returns.
// Sends an amount of existing coins from any caller to an address function send(address receiver, uint amount) public { require(amount <= balances[msg.sender], "Insufficient balance."); balances[msg.sender] -= amount; balances[receiver] += amount; emit Sent(msg.sender, receiver, amount); } 
The function first checks the pre-conditions, then updates the storage (i.e. balances) and finally publishes the post-condition as the Sent event. The gas which is consumed by the transaction is sent to the miner as a reward for executing this transaction.
Unlike Ethereum, a transaction in Ergo is a data structure holding a list of input coins which it spends and a list of output coins which it creates preserving the total balances of ERGs and tokens (in which Ergo is similar to Bitcoin).
Turning back to the example above, since Ergo natively supports tokens, therefore for this specific example of sending tokens we don't need to write any code in ErgoScript. Instead we need to create the ‘send’ transaction shown in the following figure, which describes the same token transfer but declaratively.
https://preview.redd.it/sxs3kesvrsv41.png?width=1348&format=png&auto=webp&s=582382bc26912ff79114d831d937d94b6988e69f
The picture visually describes the following steps, which the network user needs to perform:
  1. Select unspent sender's boxes, containing in total tB >= amount of tokens and B >= txFee + minErg ERGs.
  2. Create an output target box which is protected by the receiver public key with minErg ERGs and amount of T tokens.
  3. Create one fee output protected by the minerFee contract with txFee ERGs.
  4. Create one change output protected by the sender public key, containing B - minErg - txFee ERGs and tB - amount of T tokens.
  5. Create a new transaction, sign it using the sender's secret key and send to the Ergo network.
What is important to understand here is that all of these steps are preformed off-chain (for example using Appkit Transaction API) by the user's application. Ergo network nodes don't need to repeat this transaction creation process, they only need to validate the already formed transaction. ErgoScript contracts are stored in the inputs of the transaction and check spending conditions. The node executes the contracts on-chain when the transaction is validated. The transaction is valid if all of the conditions are satisfied.
Thus, in Ethereum when we “send amount from sender to recipient” we are literally editing balances and updating the storage with a concrete set of commands. This happens on-chain and thus a new transaction is also created on-chain as the result of this process.
In Ergo (as in Bitcoin) transactions are created off-chain and the network nodes only verify them. The effects of the transaction on the blockchain state is that input coins (or Boxes in Ergo's parlance) are removed and output boxes are added to the UTXO set.
In the example above we don't use an ErgoScript contract but instead assume a signature check is used as the spending pre-condition. However in more complex application scenarios we of course need to use ErgoScript which is what we are going to discuss next.

From Changing State to Checking Context

In the send function example we first checked the pre-condition (require(amount <= balances[msg.sender],...) ) and then changed the state (i.e. update balances balances[msg.sender] -= amount ). This is typical in Ethereum transactions. Before we change anything we need to check if it is valid to do so.
In Ergo, as we discussed previously, the state (i.e. UTXO set of boxes) is changed implicitly when a valid transaction is included in a block. Thus we only need to check the pre-conditions before the transaction can be added to the block. This is what ErgoScript contracts do.
It is not possible to “change the state” in ErgoScript because it is a language to check pre-conditions for spending coins. ErgoScript is a purely functional language without side effects that operates on immutable data values. This means all the inputs, outputs and other transaction parameters available in a script are immutable. This, among other things, makes ErgoScript a very simple language that is easy to learn and safe to use. Similar to Bitcoin, each input box contains a script, which should return the true value in order to 1) allow spending of the box (i.e. removing from the UTXO set) and 2) adding the transaction to the block.
If we are being pedantic, it is therefore incorrect (strictly speaking) to think of ErgoScript as the language of Ergo contracts, because it is the language of propositions (logical predicates, formulas, etc.) which protect boxes from “illegal” spending. Unlike Bitcoin, in Ergo the whole transaction and a part of the current blockchain context is available to every script. Therefore each script may check which outputs are created by the transaction, their ERG and token amounts (we will use this capability in our example DEX contracts), current block number etc.
In ErgoScript you define the conditions of whether changes (i.e. coin spending) are allowed to happen in a given context. This is in contrast to programming the changes imperatively in the code of a contract.
While Ergo's transaction model unlocks a whole range of applications like (DEX, DeFi Apps, LETS, etc), designing contracts as pre-conditions for coin spending (or guarding scripts) directly is not intuitive. In the next sections we will consider a useful graphical notation to design contracts declaratively using FlowCard Diagrams, which is a visual representation of executable components (FlowCards).
FlowCards aim to radically simplify dApp development on the Ergo platform by providing a high-level declarative language, execution runtime, storage format and a graphical notation.
We will start with a high level of diagrams and go down to FlowCard specification.

FlowCard Diagrams

The idea behind FlowCard diagrams is based on the following observations: 1) An Ergo box is immutable and can only be spent in the transaction which uses it as an input. 2) We therefore can draw a flow of boxes through transactions, so that boxes flowing in to the transaction are spent and those flowing out are created and added to the UTXO. 3) A transaction from this perspective is simply a transformer of old boxes to the new ones preserving the balances of ERGs and tokens involved.
The following figure shows the main elements of the Ergo transaction we've already seen previously (now under the name of FlowCard Diagram).
https://preview.redd.it/06aqkcd1ssv41.png?width=1304&format=png&auto=webp&s=106eda730e0526919aabd5af9596b97e45b69777
There is a strictly defined meaning (semantics) behind every element of the diagram, so that the diagram is a visual representation (or a view) of the underlying executable component (called FlowCard).
The FlowCard can be used as a reusable component of an Ergo dApp to create and initiate the transaction on the Ergo blockchain. We will discuss this in the coming sections.
Now let's look at the individual pieces of the FlowCard diagram one by one.
1. Name and Parameters
Each flow card is given a name and a list of typed parameters. This is similar to a template with parameters. In the above figure we can see the Send flow card which has five parameters. The parameters are used in the specification.
2. Contract Wallet
This is a key element of the flow card. Every box has a guarding script. Often it is the script that checks a signature against a public key. This script is trivial in ErgoScript and is defined like the def pk(pubkey: Address) = { pubkey } template where pubkey is a parameter of the type Address . In the figure, the script template is applied to the parameter pk(sender) and thus a concrete wallet contract is obtained. Therefore pk(sender) and pk(receiver) yield different scripts and represent different wallets on the diagram, even though they use the same template.
Contract Wallet contains a set of all UTXO boxes which have a given script derived from the given script template using flow card parameters. For example, in the figure, the template is pk and parameter pubkey is substituted with the `sender’ flow card parameter.
3. Contract
Even though a contract is a property of a box, on the diagram we group the boxes by their contracts, therefore it looks like the boxes belong to the contracts, rather than the contracts belong to the boxes. In the example, we have three instantiated contracts pk(sender) , pk(receiver) and minerFee . Note, that pk(sender) is the instantiation of the pk template with the concrete parameter sender and minerFee is the instantiation of the pre-defined contract which protects the miner reward boxes.
4. Box name
In the diagram we can give each box a name. Besides readability of the diagram, we also use the name as a synonym of a more complex indexed access to the box in the contract. For example, change is the name of the box, which can also be used in the ErgoScript conditions instead of OUTPUTS(2) . We also use box names to associate spending conditions with the boxes.
5. Boxes in the wallet
In the diagram, we show boxes (darker rectangles) as belonging to the contract wallets (lighter rectangles). Each such box rectangle is connected with a grey transaction rectangle by either orange or green arrows or both. An output box (with an incoming green arrow) may include many lines of text where each line specifies a condition which should be checked as part of the transaction. The first line specifies the condition on the amount of ERG which should be placed in the box. Other lines may take one of the following forms:
  1. amount: TOKEN - the box should contain the given amount of the given TOKEN
  2. R == value - the box should contain the given value of the given register R
  3. boxName ? condition - the box named boxName should check condition in its script.
We discuss these conditions in the sections below.
6. Amount of ERGs in the box
Each box should store a minimum amount of ERGs. This is checked when the creating transaction is validated. In the diagram the amount of ERGs is always shown as the first line (e.g. B: ERG or B - minErg - txFee ). The value type ascription B: ERG is optional and may be used for readability. When the value is given as a formula, then this formula should be respected by the transaction which creates the box.
It is important to understand that variables like amount and txFee are not named properties of the boxes. They are parameters of the whole diagram and representing some amounts. Or put it another way, they are shared parameters between transactions (e.g. Sell Order and Swap transactions from DEX example below share the tAmt parameter). So the same name is tied to the same value throughout the diagram (this is where the tooling would help a lot). However, when it comes to on-chain validation of those values, only explicit conditions which are marked with ? are transformed to ErgoScript. At the same time, all other conditions are ensured off-chain during transaction building (for example in an application using Appkit API) and transaction validation when it is added to the blockchain.
7. Amount of T token
A box can store values of many tokens. The tokens on the diagram are named and a value variable may be associated with the token T using value: T expression. The value may be given by formula. If the formula is prefixed with a box name like boxName ? formula , then it is should also be checked in the guarding script of the boxName box. This additional specification is very convenient because 1) it allows to validate the visual design automatically, and 2) the conditions specified in the boxes of a diagram are enough to synthesize the necessary guarding scripts. (more about this below at “From Diagrams To ErgoScript Contracts”)
8. Tx Inputs
Inputs are connected to the corresponding transaction by orange arrows. An input arrow may have a label of the following forms:
  1. [email protected] - optional name with an index i.e. [email protected] or u/2 . This is a property of the target endpoint of the arrow. The name is used in conditions of related boxes and the index is the position of the corresponding box in the INPUTS collection of the transaction.
  2. !action - is a property of the source of the arrow and gives a name for an alternative spending path of the box (we will see this in DEX example)
Because of alternative spending paths, a box may have many outgoing orange arrows, in which case they should be labeled with different actions.
9. Transaction
A transaction spends input boxes and creates output boxes. The input boxes are given by the orange arrows and the labels are expected to put inputs at the right indexes in INPUTS collection. The output boxes are given by the green arrows. Each transaction should preserve a strict balance of ERG values (sum of inputs == sum of outputs) and for each token the sum of inputs >= the sum of outputs. The design diagram requires an explicit specification of the ERG and token values for all of the output boxes to avoid implicit errors and ensure better readability.
10. Tx Outputs
Outputs are connected to the corresponding transaction by green arrows. An output arrow may have a label of the following [email protected] , where an optional name is accompanied with an index i.e. [email protected] or u/2 . This is a property of the source endpoint of the arrow. The name is used in conditions of the related boxes and the index is the position of the corresponding box in the OUTPUTS collection of the transaction.

Example: Decentralized Exchange (DEX)

Now let's use the above described notation to design a FlowCard for a DEX dApp. It is simple enough yet also illustrates all of the key features of FlowCard diagrams which we've introduced in the previous section.
The dApp scenario is shown in the figure below: There are three participants (buyer, seller and DEX) of the DEX dApp and five different transaction types, which are created by participants. The buyer wants to swap ergAmt of ERGs for tAmt of TID tokens (or vice versa, the seller wants to sell TID tokens for ERGs, who sends the order first doesn't matter). Both the buyer and the seller can cancel their orders any time. The DEX off-chain matching service can find matching orders and create the Swap transaction to complete the exchange.
The following diagram fully (and formally) specifies all of the five transactions that must be created off-chain by the DEX dApp. It also specifies all of the spending conditions that should be verified on-chain.

https://preview.redd.it/piogz0v9ssv41.png?width=1614&format=png&auto=webp&s=e1b503a635ad3d138ef91e2f0c3b726e78958646
Let's discuss the FlowCard diagram and the logic of each transaction in details:
Buy Order Transaction
A buyer creates a Buy Order transaction. The transaction spends E amount of ERGs (which we will write E: ERG ) from one or more boxes in the pk(buyer) wallet. The transaction creates a bid box with ergAmt: ERG protected by the buyOrder script. The buyOrder script is synthesized from the specification (see below at “From Diagrams To ErgoScript Contracts”) either manually or automatically by a tool. Even though we don't need to define the buyOrder script explicitly during designing, at run time the bid box should contain the buyOrder script as the guarding proposition (which checks the box spending conditions), otherwise the conditions specified in the diagram will not be checked.
The change box is created to make the input and output sums of the transaction balanced. The transaction fee box is omitted because it can be added automatically by the tools. In practice, however, the designer can add the fee box explicitly to the a diagram. It covers the cases of more complex transactions (like Swap) where there are many ways to pay the transaction fee.
Cancel Buy, Cancel Sell Transactions
At any time, the buyer can cancel the order by sending CancelBuy transaction. The transaction should satisfy the guarding buyOrder contract which protects the bid box. As you can see on the diagram, both the Cancel and the Swap transactions can spend the bid box. When a box has spending alternatives (or spending paths) then each alternative is identified by a unique name prefixed with ! (!cancel and !swap for the bid box). Each alternative path has specific spending conditions. In our example, when the Cancel Buy transaction spends the bid box the ?buyer condition should be satisfied, which we read as “the signature for the buyer address should be presented in the transaction”. Therefore, only buyer can cancel the buy order. This “signature” condition is only required for the !cancel alternative spending path and not required for !swap .
Sell Order Transaction
The Sell Order transaction is similar to the BuyOrder in that it deals with tokens in addition to ERGs. The transaction spends E: ERG and T: TID tokens from seller's wallet (specified as pk(seller) contract). The two outputs are ask and change . The change is a standard box to balance transaction. The ask box keeps tAmt: TID tokens for the exchange and minErg: ERG - the minimum amount of ERGs required in every box.
Swap Transaction
This is a key transaction in the DEX dApp scenario. The transaction has several spending conditions on the input boxes and those conditions are included in the buyOrder and sellOrder scripts (which are verified when the transaction is added to the blockchain). However, on the diagram those conditions are not specified in the bid and ask boxes, they are instead defined in the output boxes of the transaction.
This is a convention for improved usability because most of the conditions relate to the properties of the output boxes. We could specify those properties in the bid box, but then we would have to use more complex expressions.
Let's consider the output created by the arrow labeled with [email protected] . This label tells us that the output is at the index 0 in the OUTPUTS collection of the transaction and that in the diagram we can refer to this box by the buyerOut name. Thus we can label both the box itself and the arrow to give the box a name.
The conditions shown in the buyerOut box have the form bid ? condition , which means they should be verified on-chain in order to spend the bid box. The conditions have the following meaning:
  • tAmt: TID requires the box to have tAmt amount of TID token
  • R4 == bid.id requires R4 register in the box to be equal to id of the bid box.
  • script == buyer requires the buyerOut box to have the script of the wallet where it is located on the diagram, i.e. pk(buyer)
Similar properties are added to the sellerOut box, which is specified to be at index 1 and the name is given to it using the label on the box itself, rather than on the arrow.
The Swap transaction spends two boxes bid and ask using the !swap spending path on both, however unlike !cancel the conditions on the path are not specified. This is where the bid ? and ask ? prefixes come into play. They are used so that the conditions listed in the buyerOut and sellerOut boxes are moved to the !swap spending path of the bid and ask boxes correspondingly.
If you look at the conditions of the output boxes, you will see that they exactly specify the swap of values between seller's and buyer's wallets. The buyer gets the necessary amount of TID token and seller gets the corresponding amount of ERGs. The Swap transaction is created when there are two matching boxes with buyOrder and sellOrder contracts.

From Diagrams To ErgoScript Contracts

What is interesting about FlowCard specifications is that we can use them to automatically generate the necessary ErgoTree scripts. With the appropriate tooling support this can be done automatically, but with the lack of thereof, it can be done manually. Thus, the FlowCard allows us to capture and visually represent all of the design choices and semantic details of an Ergo dApp.
What we are going to do next is to mechanically create the buyOrder contract from the information given in the DEX flow card.
Recall that each script is a proposition (boolean valued expression) which should evaluate to true to allow spending of the box. When we have many conditions to be met at the same time we can combine them in a logical formula using the AND binary operation, and if we have alternatives (not necessarily exclusive) we can put them into the OR operation.
The buyOrder box has the alternative spending paths !cancel and !swap . Thus the ErgoScript code should have OR operation with two arguments - one for each spending path.
/** buyOrder contract */ { val cancelCondition = {} val swapCondition = {} cancelCondition || swapCondition } 
The formula for the cancelCondition expression is given in the !cancel spending path of the buyOrder box. We can directly include it in the script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = {} cancelCondition || swapCondition } 
For the !swap spending path of the buyOrder box the conditions are specified in the buyerOut output box of the Swap transaction. If we simply include them in the swapCondition then we get a syntactically incorrect script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = { tAmt: TID && R4 == bid.id && @contract } cancelCondition || swapCondition } 
We can however translate the conditions from the diagram syntax to ErgoScript expressions using the following simple rules
  1. [email protected] ==> val buyerOut = OUTPUTS(0)
  2. tAmt: TID ==> tid._2 == tAmt where tid = buyerOut.tokens(TID)
  3. R4 == bid.id ==> R4 == SELF.id where R4 = buyerOut.R4[Coll[Byte]].get
  4. script == buyer ==> buyerOut.propositionBytes == buyer.propBytes
Note, in the diagram TID represents a token id, but ErgoScript doesn't have access to the tokens by the ids so we cannot write tokens.getByKey(TID) . For this reason, when the diagram is translated into ErgoScript, TID becomes a named constant of the index in tokens collection of the box. The concrete value of the constant is assigned when the BuyOrder transaction with the buyOrder box is created. The correspondence and consistency between the actual tokenId, the TID constant and the actual tokens of the buyerOut box is ensured by the off-chain application code, which is completely possible since all of the transactions are created by the application using FlowCard as a guiding specification. This may sound too complicated, but this is part of the translation from diagram specification to actual executable application code, most of which can be automated.
After the transformation we can obtain a correct script which checks all the required preconditions for spending the buyOrder box.
/** buyOrder contract */ def DEX(buyer: Addrss, seller: Address, TID: Int, ergAmt: Long, tAmt: Long) { val cancelCondition: SigmaProp = { buyer } // verify buyer's sig (ProveDlog) val swapCondition = OUTPUTS.size > 0 && { // securing OUTPUTS access val buyerOut = OUTPUTS(0) // from [email protected] buyerOut.tokens.size > TID && { // securing tokens access val tid = buyerOut.tokens(TID) val regR4 = buyerOut.R4[Coll[Byte]] regR4.isDefined && { // securing R4 access val R4 = regR4.get tid._2 == tAmt && // from tAmt: TID R4 == SELF.id && // from R4 == bid.id buyerOut.propositionBytes == buyer.propBytes // from script == buyer } } } cancelCondition || swapCondition } 
A similar script for the sellOrder box can be obtained using the same translation rules. With the help of the tooling the code of contracts can be mechanically generated from the diagram specification.

Conclusions

Declarative programming models have already won the battle against imperative programming in many application domains like Big Data, Stream Processing, Deep Learning, Databases, etc. Ergo is pioneering the declarative model of dApp development as a better and safer alternative to the now popular imperative model of smart contracts.
The concept of FlowCard shifts the focus from writing ErgoScript contracts to the overall flow of values (hence the name), in such a way, that ErgoScript can always be generated from them. You will never need to look at the ErgoScript code once the tooling is in place.
Here are the possible next steps for future work:
  1. Storage format for FlowCard Spec and the corresponding EIP standardized file format (Json/XML/Protobuf). This will allow various tools (Diagram Editor, Runtime, dApps etc) to create and use *.flowcard files.
  2. FlowCard Viewer, which can generate the diagrams from *.flowcard files.
  3. FlowCard Runtime, which can run *.flowcard files, create and send transactions to Ergo network.
  4. FlowCard Designer Tool, which can simplify development of complex diagrams . This will make designing and validation of Ergo contracts a pleasant experience, more like drawing rather than coding. In addition, the correctness of the whole dApp scenario can be verified and controlled by the tooling.
submitted by eleanorcwhite to btc [link] [comments]

Bull Bitcoin’s Dollar-Cost Averaging tool for Canadians: a detailed overview

Hello fellow Canadian Bitcoiners!
I'm Francis Pouliot, CEO and founder of Bull Bitcoin (previously known as Bitcoin Outlet) and Bylls.
I haven't been active on Reddit for a while but I thought I'd pop back here to let the community know about our new dollar-cost averaging feature, "Recurring Buy"
This post is a copy of my most recent medium article which you can read here if you want to see the screenshots. https://medium.com/bull-bitcoin/bull-bitcoins-dollar-cost-averaging-tool-for-canadians-the-right-time-to-buy-bitcoin-is-every-day-82a992ca22c1
Thanks in advance for any feedback and suggestions!
[Post starts here]
The Bull Bitcoin team is constantly trying to reduce the frictions ordinary people face when investing in Bitcoin and propose innovative features which ensure our users follow Bitcoin best practices and minimize their risks.
We are particularly excited and proud about our latest feature: an automated Bitcoin dollar-cost averaging tool which we dubbed “Recurring Buy”.
The Recurring Buy feature lets Bull Bitcoin users create an automated schedule that will buy Bitcoin every day using the funds in their account balance and send the Bitcoin directly to their Bitcoin wallet straight away.
We put a lot of thought in the implementation details and striking the right trade-offs for a simple and elegant solution. Our hope is that it will become a standard other Bitcoin exchanges will emulate for the benefit of their users. This standard will certainly evolve over time as we accumulate feedback and operational experience.
In this article, I cover:
The problem that we are trying to solve
Recurring Buy feature details, processes and instructions
The rationale (and tradeoffs) behind the main feature design choices
Bull Bitcoin is only available to Canadians, but non-Canadians that wish to have a look at how it works are welcome to make a Bull Bitcoin account and check out how it works here. You will be able to go through the process of create the schedule for testing purposes, but you wont be able to fund your account and actually purchase Bitcoin.
What problems does Dollar-Cost Averaging solve?
The most common concern of Bitcoin investors is, not surprisingly, “when is the right time to buy Bitcoin?”. Bitcoin is indeed a very volatile asset. A quick glance at a Bitcoin price chart shows there are without a doubt “worse times” and “better times” to invest in Bitcoin. But is that the same as the “right” time?
Gurus, analysts and journalists continuously offer their theories explaining what affects the Bitcoin price, supported by fancy trading charts and geopolitical analysis, further reinforcing the false notion that it is possible to predict the price of Bitcoin.
Newbies are constantly bombarded with mainstream media headlines of spectacular gains and devastating losses. For some, this grows into an irresistible temptation to get rich quick. Others become crippled with the fear of becoming “the sucker” on which early adopters dump their bags.
Veterans are haunted by past Bitcoin purchases which were quickly followed by a crash in the price. “I should have waited to buy the dip…”
Many Bitcoin veterans and long-term investors often shrug off the question of when is the right time to buy with the philosophy: “just hodl”. But even those holding until their death will recognize that buying more Bitcoin for the same price is a better outcome.
Given the very high daily volatility of Bitcoin, a hodler can find himself in many years having significantly less wealth just because he once bought Bitcoin on a Monday instead of a Wednesday. His options are either to leave it up to chance or make an attempt to “time the market” and “buy the dip”, which can turn into a stressful trading obsession, irrational decisions (which have a negative impact on budget, income and expenses) and severe psychological trauma. In addition, trying to “buy the dip” is often synonymous to keeping large amounts of fiat on an exchange to be ready for “when the time comes”.
There must be a better way.
Bitcoin investors should be rewarded for having understood Bitcoin’s long-term value proposition early on, for having taken the risk to invest accordingly and for having followed best practices. Not for being lucky.
Overview of features and rules
In this section I go into every detail of the Recurring Buy feature. In the following section, I focus on explaining why we chose this particular user experience.
The user first decides his target investment amount. Ideally, this is a monthly budget or yearly budget he allocates to investing in Bitcoin based on his projected income and expenses.
The user then chooses either the duration of the Recurring Buy schedule or the daily purchase amount. The longer the better.
The frequency is each day and cannot be modified.
The user must submit a Bitcoin address before activating a Recurring Buy schedule. By default, every transaction will be sent to that Bitcoin address. It’s the fallback address in case they don’t provide multiple addresses later.
Once the user has filled the form with target amount, the duration and the Bitcoin address, he can activate the Recurring Buy Schedule.
The user is not required to already have funds in his account balance to activate the schedule.
We will randomly select a time of day at which his transaction will be processed (every hour, so 24 possible times). If the user insists on another time of day, he can cancel his Recurring Buy schedule and try again.


The Recurring Buy feature as displayed on bullbitcoin.com/recurring-buys
The schedule is then displayed to the user, showing the time and date at which transactions that will take place in the future. The user will be able to see how long his current balance will last.
He can follow the progress of the dollar-cost averaging schedule, monitor in real time his average acquisition cost, and audit each transaction individually.
At this point, the user can and should change the Bitcoin address of his next transactions to avoid address re-use. Address re-use is not forbidden, but it is highly discouraged.
After having modified the Bitcoin addresses, there is nothing left for the user to do except watch the bitcoins appear in his Bitcoin wallet every day!
The Bitcoins are sent right away at the time of purchase.
Bitcoin transactions using the Recurring Buy feature will have the lowest possible Bitcoin network transaction fee to avoid creating upwards pressure on the fee market impact other network users.


What users see after first activating a schedule
The Recurring Buy schedule will be cancelled automatically at the time of the next purchase if the balance is insufficient. He can add more funds to his balance whenever he wants.
The Recurring Buy schedule will continue until the target amount is reached or until the account balance runs out.
The user can cancel his Recurring Buy schedule whenever he wants.
If the user wants to change the amount or duration of the schedule, he can simply cancel his current schedule and create a new one.
Each schedule has a unique identifier so that users can keep track of various schedules they perform over time.
Once a schedule is completed, either fully or partially, a summary will be provided which shows the number of transactions completed, the average acquisition cost, the total amount of Bitcoin purchase and the total amount of fiat spent. Useful for accounting!


A partially completed Recurring Buy schedule cancelled after 9 days due to insufficient funds
Though process in making our design choices
Recurring Bitcoin Purchases vs. Recurring Payment/Funding
The first and most important design choice was to separate the processes of funding the account balance with fiat (the payment) from the process of buying Bitcoin (the purchase). Users do not need to make a bank transaction every time they do a Bitcoin purchase. They first fund their account manually on their own terms, and the recurring purchases are debited from their pre-funded account balance.
Another approach would have been to automatically withdraw fiat from the user’s bank account (e.g. a direct debit or subscription billing) for each transaction (like our friends at Amber) or to instruct the user to set-up recurring payments to Bull Bitcoin from their bank account (like our friends at Bittr). The downside of these strategies is that they require numerous bank transactions which increases transaction fees and the likelihood of triggering fraud and compliance flags at the user’s bank. However, this does remove the user’s need to keep larger amounts of fiat on the exchange and reduces the friction of having to make manual bank payments.
Bull Bitcoin is currently working on a separate “Recurring Funding” feature that will automatically debit fiat from the user’s bank accounts using a separate recurring schedule with a minimum frequency of once a week, with a target of once every two weeks or once a month to match the user’s income frequency. This can, and will, be used in combination from the “Recurring Buy” feature, but both can be used separately.
The ultimate experience that we wish to achieve is that users will automatically set aside, each paycheck (two weeks), a small budget to invest in Bitcoin using the “Recurring Funding” feature which is sufficient to refill their account balance for the next two weeks of daily recurring purchases.
Frequency of transactions
The second important decision was about customizing the frequency of the schedule. We decided to make it “each day” only. This is specifically to ensure users have a large enough sample size and remain consistent which are the two key components to a successful dollar-cost averaging strategy.
A higher amount of recurring transactions (larger sample size) will result in the user’s average acquisition being closer to the actual average Bitcoin price over that period of time. Weekly or monthly recurring purchases can provide the same effectiveness if they are performed over a duration of time which is 7x longer (weekly) or 30x longer (monthly).
It is our belief that the longer the duration of the schedule, the more likely the user is to cancel the recurring buy schedule in order to “buy the dip”. Dollar-cost averaging is boring, and watching sats appear in the wallet every day is a good way to reduce the temptation of breaking the consistency.
We do not force this on users: they can still cancel the schedule if they want and go all-in. We consider it more of a gentle nudge in the right direction.
Frequency of withdrawals (one purchase = one bitcoin transaction)
This is one of the most interesting design choices because it is a trade-off between scalability (costs), privacy and custody. Ultimately, we decided that trust-minimization (no custody) and privacy were the most important at the expense of long-term scalability and costs.
Realistically, Bitcoin network fees are currently low and we expect them to remain low for the near future, although they will certainly increase massively over the long-term. One of the ways we mitigated this problem was to select the smallest possible transaction fee for transactions done in the context of Recurring Buy, separate from regular transaction fees on regular Bitcoin purchases (which, at Bull Bitcoin, are very generous).
Note: users must merge their UTXOs periodically to avoid being stuck with a large amount of small UTXOs in the future when fees become more expensive. This is what makes me most uncomfortable about our solution. I hope to also solve this problem, but it is ultimately something Bitcoin wallets need to address as well. Perhaps an automated tool in Bitcoin wallets which merges UTXOs periodically when the fees are low? Food for thought.
When transaction fees and scalability becomes a problem for us, it will have become a problem for all other small payments on the Bitcoin network, and we will use whatever solution is most appropriate at that time.
It is possible that Lightning Network ends up being the scalability solution, although currently it is logistically very difficult to perform automated payouts to users using Lightning, particularly recurring payouts, which require users to create Bolt11 invoices and to convince other peers in the network to open channels and fund channels with them for inbound capacity.
These are the general trade-offs:
Send a Bitcoin transaction for every purchase (what we do) - Most expensive for the exchange - Most expensive for the user (many UTXOs) - Increases Bitcoin Network UTXOs set - Inefficient usage of block space - Most private - Zero custody risk
Keep custody of the Bitcoin until the schedule is over or when the user requests a withdrawal (what Coinbase does) - No additional costs -No blockchain bloating - Same level of privacy - High custody risk
Batch user transactions together at fixed intervals (e.g. every day) - Slightly lower transaction costs for the exchange - Same costs for the user - Slightly more efficient use of block space - Same level of UTXO set bloating - Much lower level of privacy - Slightly higher custody risk
Single address vs multiple addresses vs HD keys (xpubs)
The final decision we had to make was preventing address re-use and allowing users to provide an HD key (xpub) rather than a Bitcoin address.
Address re-use generally decreases privacy because it becomes possible for third-party blockchain snoops to figure out that multiple Bitcoin transactions are going to the same user. But we must also consider that even transactions are sent to multiple addresses, particularly if they are small amounts, it is highly likely that the user will “merge” the coins into a single transaction when spending from his wallet. It is always possible for users to prevent this using Coinjoin, in which there is a large privacy gain in not re-using addresses compared to using a single address.
It is important to note that this does not decrease privacy compared to regular Bitcoin purchases on Bull Bitcoin outside of “Recurring Buy”. Whether a user has one transaction of $1000 going to a Bitcoin address or 10x$100 going that same Bitcoin address doesn’t reveal any new information about the user other than the fact he is likely using a dollar-cost averaging mechanism. It is rather a missed opportunity to gain more privacy.
Another smaller decision was whether or not we should ask the user to provide all his addresses upfront before being able to activate the schedule, which would completely remove the possibility of address re-use. We ultimately decided that because this process can take a very long time (imagine doing Recurring Buy every day for 365 days) it is better to let the user do this at his own pace, particularly because he may eventually change his Bitcoin wallet and forget to change the addresses in the schedule.
There are also various legitimate use-cases where users have no choice but to re-use the same address . A discussion for another day!
Asking the user to provide an XPUB is a great solution to address re-use. The exchange must dynamically derive a new Bitcoin address for the user at each transaction, which is not really a technical challenge. As far as I can tell, Bittr is the only Bitcoin exchange exchange which has implemented this technique. Kudos!
It is however important that the user doesn’t reuse this XPUB for anything else, otherwise the exchange can track his entire wallet balance and transaction history.
It is worth noting that not all wallets support HD keys or have HD keys by default (e.g. Bitcoin Core). So it is imperative that we offer the option to give Bitcoin addresses. We believe there is a lot of potential to create wallet coordination mechanisms between senders and recipients which would make this process a lot more streamlined.
In the future, we will certainly allow users to submit an XPUB instead of having to manually input a different address. But for now, we wanted to reduce the complexity to a minimum.
Conclusion: personal thoughts
I have a somewhat unique perspective on Bitcoin users due to the fact that I worked at the Bitcoin Embassy for almost 4 years. During this time, I had the opportunity to discuss face-to-face with thousands of Bitcoin investors. One of my favourite anecdotes is a nocoiner showing up at our office in December 2013 with a bag full of cash attempting to buy Bitcoin, “I know how to read a chart”, furious after being turned away. Many people who went “all-in” for short-term gains (usually altcoins) would show up to the Bitcoin Embassy office months later with heart-breaking stories.
This isn’t what I signed up for. My goal is to help people opt-out of fiat and, ultimately, to destroy the fiat currency system entirely.
This instilled in me a deep-rooted concern for gambling addiction and strong aversion to “trading”. I do not believe that Bitcoin exchanges should blindly follow “what the market dictates”. More often than not, what dictates the market is bad habits users formed because of the other Bitcoin services they used in the past, what other people are used to, and what feels familiar. Running a Bitcoin company should be inseparable from educating users on the best practices, and embedding these best practices into the user experience is the best way for them to learn.
Another important anecdote which motivated me to build a dollar-cost averaging tool is a person very close to me that had made the decision to buy Bitcoin, but was so stressed out about when was the right time to buy that they ended up not buying Bitcoin for a whole 6 months after funding their Bull Bitcoin account. That person eventually gave up and ultimately invested a large amount all at once. In hindsight, it turned out to be one of the worst possible times to invest in Bitcoin during that year.
Investing in Bitcoin can, and should be, a positive and rewarding experience.
Buying Bitcoin every day is the right strategy, but it is not necessarily lead to the best outcome.
The reality is that the best time to buy Bitcoin is at when market hits rock bottom (obviously). Sometimes, the upside from buying the dip can be much bigger than the risk (e.g. when the price dropped below $200 in 2015). But these are exceptions rather than the rule. And the cost of chasing dips is very high: stress, investing time and mental energy, and the very real psychological trauma which results from making bad trading decisions. Ultimately, it’s better to do the right thing than being lucky, but it’s not always a bad idea to cheat on your dollar-cost averaging from time to time if you can live with the costs and consequences.
Yours truly,
Francis
submitted by FrancisPouliot to BitcoinCA [link] [comments]

For the newcomers

I haven't seen this posted in a while. If you've never read this post, you really should.
Edit: Screwed up the formatting. See other comments.

People should get the full story of bitcoin because it is probably one of the strangest of all reddit subs.
bitcoin, the main sub for the bitcoin community is held and run by a person who goes by the pseudonym u/theymos. Theymos not only controls bitcoin, but also bitcoin.org and bitcointalk.com. These are top three communication channels for the bitcoin community, all controlled by just one person.
For most of bitcoin's history this did not create a problem (at least not an obvious one anyway) until around mid 2015. This happened to be around the time a new player appeared on the scene, a for-profit company called Blockstream. Blockstream was made up of/hired many (but not all) of the main bitcoin developers. (To be clear, Blockstream was founded before mid 2015 but did not become publicly active until then). A lot of people, including myself, tried to point out there we're some very serious potential conflicts of interest that could arise when one single company controls most of the main developers for the biggest decentralised and distributed cryptocurrency. There were a lot of unknowns but people seemed to give them the benefit of the doubt because they were apparently about to release some new software called "sidechains" that could offer some benefits to the network.
Not long after Blockstream came on the scene the issue of bitcoin's scalability once again came to forefront of the community. This issue came within the community a number of times since bitcoins inception. Bitcoin, as dictated in the code, cannot handle any more than around 3 transactions per second at the moment. To put that in perspective Paypal handles around 15 transactions per second on average and VISA handles something like 2000 transactions per second. The discussion in the community has been around how best to allow bitcoin to scale to allow a higher number of transactions in a given amount of time. I suggest that if anyone is interested in learning more about this problem from a technical angle, they go to btc and do a search. It's a complex issue but for many who have followed bitcoin for many years, the possible solutions seem relatively obvious. Essentially, currently the limit is put in place in just a few lines of code. This was not originally present when bitcoin was first released. It was in fact put in place afterwards as a measure to stop a bloating attack on the network. Because all bitcoin transactions have to be stored forever on the bitcoin network, someone could theoretically simply transmit a large number of transactions which would have to be stored by the entire network forever. When bitcoin was released, transactions were actually for free as the only people running the network were enthusiasts. In fact a single bitcoin did not even have any specific value so it would be impossible set a fee value. This meant that a malicious person could make the size of the bitcoin ledger grow very rapidly without much/any cost which would stop people from wanting to join the network due to the resource requirements needed to store it, which at the time would have been for very little gain.
Towards the end of the summer last year, this bitcoin scaling debate surfaced again as it was becoming clear that the transaction limit for bitcoin was semi regularly being reached and that it would not be long until it would be regularly hit and the network would become congested. This was a very serious issue for a currency. Bitcoin had made progress over the years to the point of retailers starting to offer it as a payment option. Bitcoin companies like, Microsoft, Paypal, Steam and many more had began to adopt it. If the transaction limit would be constantly maxed out, the network would become unreliable and slow for users. Users and businesses would not be able to make a reliable estimate when their transaction would be confirmed by the network.
Users, developers and businesses (which at the time was pretty much the only real bitcoin subreddit) started to discuss how we should solve the problem bitcoin. There was significant support from the users and businesses behind a simple solution put forward by the developer Gavin Andreesen. Gavin was the lead developer after Satoshi Nakamoto left bitcoin and he left it in his hands. Gavin initially proposed a very simple solution of increasing the limit which was to change the few lines of code to increase the maximum number of transactions that are allowed. For most of bitcoin's history the transaction limit had been set far far higher than the number of transactions that could potentially happen on the network. The concept of increasing the limit one time was based on the fact that history had proven that no issue had been cause by this in the past.
A certain group of bitcoin developers decided that increasing the limit by this amount was too much and that it was dangerous. They said that the increased use of resources that the network would use would create centralisation pressures which could destroy the network. The theory was that a miner of the network with more resources could publish many more transactions than a competing small miner could handle and therefore the network would tend towards few large miners rather than many small miners. The group of developers who supported this theory were all developers who worked for the company Blockstream. The argument from people in support of increasing the transaction capacity by this amount was that there are always inherent centralisation pressure with bitcoin mining. For example miners who can access the cheapest electricity will tend to succeed and that bigger miners will be able to find this cheaper electricity easier. Miners who have access to the most efficient computer chips will tend to succeed and that larger miners are more likely to be able to afford the development of them. The argument from Gavin and other who supported increasing the transaction capacity by this method are essentially there are economies of scale in mining and that these economies have far bigger centralisation pressures than increased resource cost for a larger number of transactions (up to the new limit proposed). For example, at the time the total size of the blockchain was around 50GB. Even for the cost of a 500GB SSD is only $150 and would last a number of years. This is in-comparison to the $100,000's in revenue per day a miner would be making.
Various developers put forth various other proposals, including Gavin Andresen who put forth a more conservative increase that would then continue to increase over time inline with technological improvements. Some of the employees of blockstream also put forth some proposals, but all were so conservative, it would take bitcoin many decades before it could reach a scale of VISA. Even though there was significant support from the community behind Gavin's simple proposal of increasing the limit it was becoming clear certain members of the bitcoin community who were part of Blockstream were starting to become increasingly vitriolic and divisive. Gavin then teamed up with one of the other main bitcoin developers Mike Hearn and released a coded (i.e. working) version of the bitcoin software that would only activate if it was supported by a significant majority of the network. What happened next was where things really started to get weird.
After this free and open source software was released, Theymos, the person who controls all the main communication channels for the bitcoin community implemented a new moderation policy that disallowed any discussion of this new software. Specifically, if people were to discuss this software, their comments would be deleted and ultimately they would be banned temporarily or permanently. This caused chaos within the community as there was very clear support for this software at the time and it seemed our best hope for finally solving the problem and moving on. Instead a censorship campaign was started. At first it 'all' they were doing was banning and removing discussions but after a while it turned into actively manipulating the discussion. For example, if a thread was created where there was positive sentiment for increasing the transaction capacity or being negative about the moderation policies or negative about the actions of certain bitcoin developers, the mods of bitcoin would selectively change the sorting order of threads to 'controversial' so that the most support opinions would be sorted to the bottom of the thread and the most vitriolic would be sorted to the top of the thread. This was initially very transparent as it was possible to see that the most downvoted comments were at the top and some of the most upvoted were at the bottom. So they then implemented hiding the voting scores next to the users name. This made impossible to work out the sentiment of the community and when combined with selectively setting the sorting order to controversial it was possible control what information users were seeing. Also, due to the very very large number of removed comments and users it was becoming obvious the scale of censorship going on. To hide this they implemented code in their CSS for the sub that completely hid comments that they had removed so that the censorship itself was hidden. Anyone in support of scaling bitcoin were removed from the main communication channels. Theymos even proudly announced that he didn't care if he had to remove 90% of the users. He also later acknowledged that he knew he had the ability to block support of this software using the control he had over the communication channels.
While this was all going on, Blockstream and it's employees started lobbying the community by paying for conferences about scaling bitcoin, but with the very very strange rule that no decisions could be made and no complete solutions could be proposed. These conferences were likely strategically (and successfully) created to stunt support for the scaling software Gavin and Mike had released by forcing the community to take a "lets wait and see what comes from the conferences" kind of approach. Since no final solutions were allowed at these conferences, they only served to hinder and splinter the communities efforts to find a solution. As the software Gavin and Mike released called BitcoinXT gained support it started to be attacked. Users of the software were attack by DDOS. Employees of Blockstream were recommending attacks against the software, such as faking support for it, to only then drop support at the last moment to put the network in disarray. Blockstream employees were also publicly talking about suing Gavin and Mike from various different angles simply for releasing this open source software that no one was forced to run. In the end Mike Hearn decided to leave due to the way many members of the bitcoin community had treated him. This was due to the massive disinformation campaign against him on bitcoin. One of the many tactics that are used against anyone who does not support Blockstream and the bitcoin developers who work for them is that you will be targeted in a smear campaign. This has happened to a number of individuals and companies who showed support for scaling bitcoin. Theymos has threatened companies that he will ban any discussion of them on the communication channels he controls (i.e. all the main ones) for simply running software that he disagrees with (i.e. any software that scales bitcoin).
As time passed, more and more proposals were offered, all against the backdrop of ever increasing censorship in the main bitcoin communication channels. It finally come down the smallest and most conservative solution. This solution was much smaller than even the employees of Blockstream had proposed months earlier. As usual there was enormous attacks from all sides and the most vocal opponents were the employees of Blockstream. These attacks still are ongoing today. As this software started to gain support, Blockstream organised more meetings, especially with the biggest bitcoin miners and made a pact with them. They promised that they would release code that would offer an on-chain scaling solution hardfork within about 4 months, but if the miners wanted this they would have to commit to running their software and only their software. The miners agreed and the ended up not running the most conservative proposal possible. This was in February last year. There is no hardfork proposal in sight from the people who agreed to this pact and bitcoin is still stuck with the exact same transaction limit it has had since the limit was put in place about 6 years ago. Gavin has also been publicly smeared by the developers at Blockstream and a plot was made against him to have him removed from the development team. Gavin has now been, for all intents an purposes, expelled from bitcoin development. This has meant that all control of bitcoin development is in the hands of the developers working at Blockstream.
There is a new proposal that offers a market based approach to scaling bitcoin. This essentially lets the market decide. Of course, as usual there has been attacks against it, and verbal attacks from the employees of Blockstream. This has the biggest chance of gaining wide support and solving the problem for good.
To give you an idea of Blockstream; It has hired most of the main and active bitcoin developers and is now synonymous with the "Core" bitcoin development team. They AFAIK no products at all. They have received around $75m in funding. Every single thing they do is supported by theymos. They have started implementing an entirely new economic system for bitcoin against the will of it's users and have blocked any and all attempts to scaling the network in line with the original vision.
Although this comment is ridiculously long, it really only covers the tip of the iceberg. You could write a book on the last two years of bitcoin. The things that have been going on have been mind blowing. One last thing that I think is worth talking about is the u/bashco's claim of vote manipulation.
The users that the video talks about have very very large numbers of downvotes mostly due to them having a very very high chance of being astroturfers. Around about the same time last year when Blockstream came active on the scene every single bitcoin troll disappeared, and I mean literally every single one. In the years before that there were a large number of active anti-bitcoin trolls. They even have an active sub buttcoin. Up until last year you could go down to the bottom of pretty much any thread in bitcoin and see many of the usual trolls who were heavily downvoted for saying something along the lines of "bitcoin is shit", "You guys and your tulips" etc. But suddenly last year they all disappeared. Instead a new type of bitcoin user appeared. Someone who said they were fully in support of bitcoin but they just so happened to support every single thing Blockstream and its employees said and did. They had the exact same tone as the trolls who had disappeared. Their way to talking to people was aggressive, they'd call people names, they had a relatively poor understanding of how bitcoin fundamentally worked. They were extremely argumentative. These users are the majority of the list of that video. When the 10's of thousands of users were censored and expelled from bitcoin they ended up congregating in btc. The strange thing was that the users listed in that video also moved over to btc and spend all day everyday posting troll-like comments and misinformation. Naturally they get heavily downvoted by the real users in btc. They spend their time constantly causing as much drama as possible. At every opportunity they scream about "censorship" in btc while they are happy about the censorship in bitcoin. These people are astroturfers. What someone somewhere worked out, is that all you have to do to take down a community is say that you are on their side. It is an astoundingly effective form of psychological attack.
submitted by CuriousTitmouse to btc [link] [comments]

BTC is centralized and filled with misinformation/censorships and controlled by a single entity. However, their propaganda has worked wonders and made many people think the opposite. The fact is, Bitcoin Cash is magnitudes more decentralized...

Credits To thepaip and singularity87
TLDR: BTC is centralized and filled with misinformation/censorships and controlled by a single entity. However, their propaganda has worked wonders and made many people think the opposite. The fact is, Bitcoin Cash is magnitudes more decentralized in terms of miners, multiple independent development/research teams, etc. There are 3 things that cannot be hidden for long; the sun, the moon, and the truth. Educate yourself and spread the truth. This is the only way to make a stand against misinformation and censorships.
People should get the full story of bitcoin because it is probably one of the strangest of all reddit subs.
bitcoin, the main sub for the bitcoin community is held and run by a person who goes by the pseudonym u/theymos. Theymos not only controls bitcoin, but also bitcoin.org and bitcointalk.com. These are top three communication channels for the bitcoin community, all controlled by just one person.
For most of bitcoin's history this did not create a problem (at least not an obvious one anyway) until around mid 2015. This happened to be around the time a new player appeared on the scene, a for-profit company called Blockstream. Blockstream was made up of/hired many (but not all) of the main bitcoin developers. (To be clear, Blockstream was founded before mid 2015 but did not become publicly active until then). A lot of people, including myself, tried to point out there we're some very serious potential conflicts of interest that could arise when one single company controls most of the main developers for the biggest decentralised and distributed cryptocurrency. There were a lot of unknowns but people seemed to give them the benefit of the doubt because they were apparently about to release some new software called "sidechains" that could offer some benefits to the network.
Not long after Blockstream came on the scene the issue of bitcoin's scalability once again came to forefront of the community. This issue came within the community a number of times since bitcoins inception. Bitcoin, as dictated in the code, cannot handle any more than around 3 transactions per second at the moment. To put that in perspective Paypal handles around 15 transactions per second on average and VISA handles something like 2000 transactions per second. The discussion in the community has been around how best to allow bitcoin to scale to allow a higher number of transactions in a given amount of time. I suggest that if anyone is interested in learning more about this problem from a technical angle, they go to btc and do a search. It's a complex issue but for many who have followed bitcoin for many years, the possible solutions seem relatively obvious. Essentially, currently the limit is put in place in just a few lines of code. This was not originally present when bitcoin was first released. It was in fact put in place afterwards as a measure to stop a bloating attack on the network. Because all bitcoin transactions have to be stored forever on the bitcoin network, someone could theoretically simply transmit a large number of transactions which would have to be stored by the entire network forever. When bitcoin was released, transactions were actually for free as the only people running the network were enthusiasts. In fact a single bitcoin did not even have any specific value so it would be impossible set a fee value. This meant that a malicious person could make the size of the bitcoin ledger grow very rapidly without much/any cost which would stop people from wanting to join the network due to the resource requirements needed to store it, which at the time would have been for very little gain.
Towards the end of the summer last year, this bitcoin scaling debate surfaced again as it was becoming clear that the transaction limit for bitcoin was semi regularly being reached and that it would not be long until it would be regularly hit and the network would become congested. This was a very serious issue for a currency. Bitcoin had made progress over the years to the point of retailers starting to offer it as a payment option. Bitcoin companies like, Microsoft, Paypal, Steam and many more had began to adopt it. If the transaction limit would be constantly maxed out, the network would become unreliable and slow for users. Users and businesses would not be able to make a reliable estimate when their transaction would be confirmed by the network.
Users, developers and businesses (which at the time was pretty much the only real bitcoin subreddit) started to discuss how we should solve the problem bitcoin. There was significant support from the users and businesses behind a simple solution put forward by the developer Gavin Andreesen. Gavin was the lead developer after Satoshi Nakamoto left bitcoin and he left it in his hands. Gavin initially proposed a very simple solution of increasing the limit which was to change the few lines of code to increase the maximum number of transactions that are allowed. For most of bitcoin's history the transaction limit had been set far far higher than the number of transactions that could potentially happen on the network. The concept of increasing the limit one time was based on the fact that history had proven that no issue had been cause by this in the past.
A certain group of bitcoin developers decided that increasing the limit by this amount was too much and that it was dangerous. They said that the increased use of resources that the network would use would create centralisation pressures which could destroy the network. The theory was that a miner of the network with more resources could publish many more transactions than a competing small miner could handle and therefore the network would tend towards few large miners rather than many small miners. The group of developers who supported this theory were all developers who worked for the company Blockstream. The argument from people in support of increasing the transaction capacity by this amount was that there are always inherent centralisation pressure with bitcoin mining. For example miners who can access the cheapest electricity will tend to succeed and that bigger miners will be able to find this cheaper electricity easier. Miners who have access to the most efficient computer chips will tend to succeed and that larger miners are more likely to be able to afford the development of them. The argument from Gavin and other who supported increasing the transaction capacity by this method are essentially there are economies of scale in mining and that these economies have far bigger centralisation pressures than increased resource cost for a larger number of transactions (up to the new limit proposed). For example, at the time the total size of the blockchain was around 50GB. Even for the cost of a 500GB SSD is only $150 and would last a number of years. This is in-comparison to the $100,000's in revenue per day a miner would be making.
Various developers put forth various other proposals, including Gavin Andresen who put forth a more conservative increase that would then continue to increase over time inline with technological improvements. Some of the employees of blockstream also put forth some proposals, but all were so conservative, it would take bitcoin many decades before it could reach a scale of VISA. Even though there was significant support from the community behind Gavin's simple proposal of increasing the limit it was becoming clear certain members of the bitcoin community who were part of Blockstream were starting to become increasingly vitriolic and divisive. Gavin then teamed up with one of the other main bitcoin developers Mike Hearn and released a coded (i.e. working) version of the bitcoin software that would only activate if it was supported by a significant majority of the network. What happened next was where things really started to get weird.
After this free and open source software was released, Theymos, the person who controls all the main communication channels for the bitcoin community implemented a new moderation policy that disallowed any discussion of this new software. Specifically, if people were to discuss this software, their comments would be deleted and ultimately they would be banned temporarily or permanently. This caused chaos within the community as there was very clear support for this software at the time and it seemed our best hope for finally solving the problem and moving on. Instead a censorship campaign was started. At first it 'all' they were doing was banning and removing discussions but after a while it turned into actively manipulating the discussion. For example, if a thread was created where there was positive sentiment for increasing the transaction capacity or being negative about the moderation policies or negative about the actions of certain bitcoin developers, the mods of bitcoin would selectively change the sorting order of threads to 'controversial' so that the most support opinions would be sorted to the bottom of the thread and the most vitriolic would be sorted to the top of the thread. This was initially very transparent as it was possible to see that the most downvoted comments were at the top and some of the most upvoted were at the bottom. So they then implemented hiding the voting scores next to the users name. This made impossible to work out the sentiment of the community and when combined with selectively setting the sorting order to controversial it was possible control what information users were seeing. Also, due to the very very large number of removed comments and users it was becoming obvious the scale of censorship going on. To hide this they implemented code in their CSS for the sub that completely hid comments that they had removed so that the censorship itself was hidden. Anyone in support of scaling bitcoin were removed from the main communication channels. Theymos even proudly announced that he didn't care if he had to remove 90% of the users. He also later acknowledged that he knew he had the ability to block support of this software using the control he had over the communication channels.
While this was all going on, Blockstream and it's employees started lobbying the community by paying for conferences about scaling bitcoin, but with the very very strange rule that no decisions could be made and no complete solutions could be proposed. These conferences were likely strategically (and successfully) created to stunt support for the scaling software Gavin and Mike had released by forcing the community to take a "lets wait and see what comes from the conferences" kind of approach. Since no final solutions were allowed at these conferences, they only served to hinder and splinter the communities efforts to find a solution. As the software Gavin and Mike released called BitcoinXT gained support it started to be attacked. Users of the software were attack by DDOS. Employees of Blockstream were recommending attacks against the software, such as faking support for it, to only then drop support at the last moment to put the network in disarray. Blockstream employees were also publicly talking about suing Gavin and Mike from various different angles simply for releasing this open source software that no one was forced to run. In the end Mike Hearn decided to leave due to the way many members of the bitcoin community had treated him. This was due to the massive disinformation campaign against him on bitcoin. One of the many tactics that are used against anyone who does not support Blockstream and the bitcoin developers who work for them is that you will be targeted in a smear campaign. This has happened to a number of individuals and companies who showed support for scaling bitcoin. Theymos has threatened companies that he will ban any discussion of them on the communication channels he controls (i.e. all the main ones) for simply running software that he disagrees with (i.e. any software that scales bitcoin).
As time passed, more and more proposals were offered, all against the backdrop of ever increasing censorship in the main bitcoin communication channels. It finally come down the smallest and most conservative solution. This solution was much smaller than even the employees of Blockstream had proposed months earlier. As usual there was enormous attacks from all sides and the most vocal opponents were the employees of Blockstream. These attacks still are ongoing today. As this software started to gain support, Blockstream organised more meetings, especially with the biggest bitcoin miners and made a pact with them. They promised that they would release code that would offer an on-chain scaling solution hardfork within about 4 months, but if the miners wanted this they would have to commit to running their software and only their software. The miners agreed and the ended up not running the most conservative proposal possible. This was in February last year. There is no hardfork proposal in sight from the people who agreed to this pact and bitcoin is still stuck with the exact same transaction limit it has had since the limit was put in place about 6 years ago. Gavin has also been publicly smeared by the developers at Blockstream and a plot was made against him to have him removed from the development team. Gavin has now been, for all intents an purposes, expelled from bitcoin development. This has meant that all control of bitcoin development is in the hands of the developers working at Blockstream.
There is a new proposal that offers a market based approach to scaling bitcoin. This essentially lets the market decide. Of course, as usual there has been attacks against it, and verbal attacks from the employees of Blockstream. This has the biggest chance of gaining wide support and solving the problem for good.
To give you an idea of Blockstream; It has hired most of the main and active bitcoin developers and is now synonymous with the "Core" bitcoin development team. They AFAIK no products at all. They have received around $75m in funding. Every single thing they do is supported by theymos. They have started implementing an entirely new economic system for bitcoin against the will of it's users and have blocked any and all attempts to scaling the network in line with the original vision.
Although this comment is ridiculously long, it really only covers the tip of the iceberg. You could write a book on the last two years of bitcoin. The things that have been going on have been mind blowing. One last thing that I think is worth talking about is the u/bashco's claim of vote manipulation.
The users that the video talks about have very very large numbers of downvotes mostly due to them having a very very high chance of being astroturfers. Around about the same time last year when Blockstream came active on the scene every single bitcoin troll disappeared, and I mean literally every single one. In the years before that there were a large number of active anti-bitcoin trolls. They even have an active sub buttcoin. Up until last year you could go down to the bottom of pretty much any thread in bitcoin and see many of the usual trolls who were heavily downvoted for saying something along the lines of "bitcoin is shit", "You guys and your tulips" etc. But suddenly last year they all disappeared. Instead a new type of bitcoin user appeared. Someone who said they were fully in support of bitcoin but they just so happened to support every single thing Blockstream and its employees said and did. They had the exact same tone as the trolls who had disappeared. Their way to talking to people was aggressive, they'd call people names, they had a relatively poor understanding of how bitcoin fundamentally worked. They were extremely argumentative. These users are the majority of the list of that video. When the 10's of thousands of users were censored and expelled from bitcoin they ended up congregating in btc. The strange thing was that the users listed in that video also moved over to btc and spend all day everyday posting troll-like comments and misinformation. Naturally they get heavily downvoted by the real users in btc. They spend their time constantly causing as much drama as possible. At every opportunity they scream about "censorship" in btc while they are happy about the censorship in bitcoin. These people are astroturfers. What someone somewhere worked out, is that all you have to do to take down a community is say that you are on their side. It is an astoundingly effective form of psychological attack.
Source: https://np.reddit.com/BitcoinMarkets/comments/6rxw7k/informative_btc_vs_bch_articles/dl8v4lp/
Sources:
https://twitter.com/adam3us/status/633119949943275520
https://www.reddit.com/Bitcoin/comments/3hb63g/bip_suggestion_lock_the_blockchain_to_only/cu5v2u2/
https://www.reddit.com/Bitcoin/comments/3h9cq4/its_time_for_a_break_about_the_recent_mess/
https://www.reddit.com/Bitcoin/comments/3uu3we/bitstamp_will_switch_to_bip_101_this_decembe
https://www.reddit.com/Bitcoin/comments/3uu3we/bitstamp_will_switch_to_bip_101_this_decembecxi370c/
https://www.reddit.com/Bitcoin/comments/3rejl9/coinbase_ceo_brian_armstrong_bip_101_is_the_best/cwpglh6
https://www.reddit.com/Bitcoin/comments/3axnc3/this_is_the_definition_of_fud_how_to_subvert/
https://www.reddit.com/btc/comments/3z0pkq/theymos_caught_redhanded_why_he_censors_all_the/
http://pastebin.com/1kvuj5bw
https://www.reddit.com/btc/comments/418r0l/lukejr_is_already_trying_to_sabotage_bitcoin/
https://medium.com/@octskyward/the-resolution-of-the-bitcoin-experiment-dabb30201f7#.cjuafsypy
https://www.reddit.com/Bitcoin/comments/3axnc3/this_is_the_definition_of_fud_how_to_subvert/
https://medium.com/@bitcoinroundtable/bitcoin-roundtable-consensus-266d475a61ff#.g42rjs2ew
https://news.bitcoin.com/bitcoin-classic-targeted-by-ddos-attacks/
https://www.reddit.com/btc/comments/5h2wiv/was_theymos_running_a_botnet_in_2007_theymos/?
https://www.reddit.com/btc/comments/5fm11b/unullc_is_actively_trying_to_delete_satoshi_from/?
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/180#discussion_r91823463
submitted by MobTwo to CryptoMarkets [link] [comments]

Banned from r/Bitcoin for sharing backstory...

"People should get the full story of bitcoin because it is probably one of the strangest of all reddit subs.
bitcoin, the main sub for the bitcoin community is held and run by a person who goes by the pseudonym u/theymos. Theymos not only controls bitcoin, but also bitcoin.org and bitcointalk.com. These are top three communication channels for the bitcoin community, all controlled by just one person.
For most of bitcoin's history, this did not create a problem (at least not an obvious one anyway) until around mid-2015. This happened to be around the time a new player appeared on the scene, a for-profit company called Blockstream. Blockstream was made up of/hired many (but not all) of the main bitcoin developers. (To be clear, Blockstream was founded before mid-2015 but did not become publicly active until then). A lot of people, including myself, tried to point out there were some very serious potential conflicts of interest that could arise when one single company controls most of the main developers for the biggest decentralised and distributed cryptocurrency. There were a lot of unknowns but people seemed to give them the benefit of the doubt because they were apparently about to release some new software called "sidechains" that could offer some benefits to the network.
Not long after Blockstream came on the scene the issue of bitcoin's scalability once again came to the forefront of the community. This issue was discussed within the community a number of times since bitcoins inception. Bitcoin, as dictated in the code, cannot handle any more than around 3 transactions per second at the moment. To put that in perspective Paypal handles around 15 transactions per second on average and VISA handles something like 2000 transactions per second. The discussion in the community has been around how best to allow bitcoin to scale to allow a higher number of transactions in a given amount of time. I suggest that if anyone is interested in learning more about this problem from a technical angle, they go to btc and do a search. It's a complex issue but for many who have followed bitcoin for many years, the possible solutions seem relatively obvious. Currently, the limit is put in place in just a few lines of code. This was not originally present when bitcoin was first released. It was in fact put in place afterwards as a measure to stop a bloating attack on the network. Because all bitcoin transactions have to be stored forever on the bitcoin network, someone could theoretically simply transmit a large number of transactions which would have to be stored by the entire network forever. When bitcoin was released, transactions were actually for free as the only people running the network were enthusiasts. In fact, a single bitcoin did not even have any specific value so it would be impossible set a fee value. This meant that a malicious person could make the size of the bitcoin ledger grow very rapidly without much/any cost which would stop people from wanting to join the network due to the resource requirements needed to store it, which at the time would have been for very little gain.
Towards the end of the summer last year, this bitcoin scaling debate surfaced again as it was becoming clear that the transaction limit for bitcoin was semi-regularly being reached and that it would not be long until it would be regularly hit and the network would become congested. This was a very serious issue for a currency. Bitcoin had made progress over the years to the point of retailers starting to offer it as a payment option. Bitcoin companies like Microsoft, Paypal, Steam and many more had begun to adopt it. If the transaction limit would be constantly maxed out, the network would become unreliable and slow for users. Users and businesses would not be able to make a reliable estimate when their transaction would be confirmed by the network.
Users, developers and businesses (which at the time was pretty much the only real bitcoin subreddit) started to discuss how we should solve the problem bitcoin. There was significant support from the users and businesses behind a simple solution put forward by the developer Gavin Andresen. Gavin was the lead developer after Satoshi Nakamoto left bitcoin and he left it in his hands. Gavin initially proposed a very simple solution of increasing the limit which was to change the few lines of code to increase the maximum number of transactions that are allowed. For most of bitcoin's history, the transaction limit had been set far higher than the number of transactions that could potentially happen on the network. The concept of increasing the limit one time was based on the fact that history had proven that no issue had been caused by this in the past.
A certain group of bitcoin developers decided that increasing the limit by this amount was too much and that it was dangerous. They said that the increased use of resources that the network would use would create centralisation pressures which could destroy the network. The theory was that a miner of the network with more resources could publish many more transactions than a competing small miner could handle and therefore the network would tend towards few large miners rather than many small miners. The group of developers who supported this theory were all developers who worked for the company Blockstream. The argument from people in support of increasing the transaction capacity by this amount was that there is always inherent centralisation pressure with bitcoin mining. For example, miners who can access the cheapest electricity will tend to succeed and that bigger miners will be able to find this cheaper electricity easier. Miners who have access to the most efficient computer chips will tend to succeed and that larger miners are more likely to be able to afford the development of them. The argument from Gavin, and others who supported increasing the transaction capacity by this method, as follows; there are economies of scale in mining and these economies of scale have far bigger centralisation pressures than increased resource cost for a larger number of transactions (up to the new limit proposed). For example, at the time the total size of the blockchain was around 50GB. Even for the cost of a 500GB SSD is only $150 and would last a number of years. This is in comparison to the $100,000's in revenue per day a miner would be making.
Various developers put forth various other proposals, including Gavin Andresen who put forth a more conservative increase that would then continue to increase over time in line with technological improvements. Some of the employees of Blockstream also put forth some proposals, but all were so conservative, it would take bitcoin many decades before it could reach a scale of VISA. Even though there was significant support from the community behind Gavin's simple proposal of increasing the limit it was becoming clear certain members of the bitcoin community who were part of Blockstream were starting to become increasingly vitriolic and divisive. Gavin then teamed up with one of the other main bitcoin developers Mike Hearn and released a coded (i.e. working) version of the bitcoin software that would only activate if it was supported by a significant majority of the network. What happened next was where things really started to get weird.
After this free and open source software was released, Theymos, the person who controls all the main communication channels for the bitcoin community implemented a new moderation policy that disallowed any discussion of this new software. Specifically, if people were to discuss this software, their comments would be deleted and ultimately they would be banned temporarily or permanently. This caused chaos within the community as there was very clear support for this software at the time and it seemed our best hope for finally solving the problem and moving on. Instead, a censorship campaign was started. At first it 'all' they were doing was banning and removing discussions but after a while, it turned into actively manipulating the discussion. For example, if a thread was created where there was positive sentiment for increasing the transaction capacity or being negative about the moderation policies or negative about the actions of certain bitcoin developers, the mods of bitcoin would selectively change the sorting order of threads to 'controversial' so that the most support opinions would be sorted to the bottom of the thread and the most vitriolic would be sorted to the top of the thread. This was initially very transparent as it was possible to see that the most downvoted comments were at the top and some of the most upvoted were at the bottom. So they then implemented hiding the voting scores next to the user's name. This made impossible to work out the sentiment of the community and when combined with selectively setting the sorting order to controversial it was possible to control what information users were seeing. Also, due to the very very large number of removed comments and users, it was becoming obvious the scale of censorship going on. To hide this they implemented code in their CSS for the sub that completely hid comments that they had removed so that the censorship itself was hidden. Anyone in support of scaling bitcoin were removed from the main communication channels. Theymos even proudly announced that he didn't care if he had to remove 90% of the users. He also later acknowledged that he knew he had the ability to block support of this software using the control he had over the communication channels.
While this was all going on, Blockstream and its employees started lobbying the community by paying for conferences about scaling bitcoin, but with the very very strange rule that no decisions could be made and no complete solutions could be proposed. These conferences were likely strategically (and successfully) created to stunt support for the scaling software Gavin and Mike had released by forcing the community to take a "let's wait and see what comes from the conferences" kind of approach. Since no final solutions were allowed at these conferences, they only served to hinder and splinter the communities efforts to find a solution. As the software Gavin and Mike released called BitcoinXT gained support it started to be attacked. Users of the software were attacked by DDOS. Employees of Blockstream were recommending attacks against the software, such as faking support for it, to only then drop support at the last moment to put the network in disarray. Blockstream employees were also publicly talking about suing Gavin and Mike from various different angles simply for releasing this open source software that no one was forced to run. In the end, Mike Hearn decided to leave due to the way many members of the bitcoin community had treated him. This was due to the massive disinformation campaign against him on bitcoin. One of the many tactics that are used against anyone who does not support Blockstream and the bitcoin developers who work for them is that you will be targeted in a smear campaign. This has happened to a number of individuals and companies who showed support for scaling bitcoin. Theymos has threatened companies that he will ban any discussion of them on the communication channels he controls (i.e. all the main ones) for simply running software that he disagrees with (i.e. any software that scales bitcoin).
As time passed, more and more proposals were offered, all against the backdrop of ever-increasing censorship in the main bitcoin communication channels. It finally came down the smallest and most conservative solution. This solution was much smaller than even the employees of Blockstream had proposed months earlier. As usual there was enormous attacks from all sides and the most vocal opponents were the employees of Blockstream. These attacks still are ongoing today. As this software started to gain support, Blockstream organised more meetings, especially with the biggest bitcoin miners and made a pact with them. They promised that they would release code that would offer an on-chain scaling solution hardfork within about 4 months, but if the miners wanted this they would have to commit to running their software and only their software. The miners agreed and the ended up not running the most conservative proposal possible. This was in February last year. There is no hardfork proposal in sight from the people who agreed to this pact and bitcoin is still stuck with the exact same transaction limit it has had since the limit was put in place about 6 years ago. Gavin has also been publicly smeared by the developers at Blockstream and a plot was made against him to have him removed from the development team. Gavin has now been, for all intents and purposes, expelled from bitcoin development. This has meant that all control of bitcoin development is in the hands of the developers working at Blockstream.
There is a new proposal that offers a market-based approach to scaling bitcoin. This essentially lets the market decide. Of course, as usual, there has been attacks against it, and verbal attacks from the employees of Blockstream. This has the biggest chance of gaining wide support and solving the problem for good.
To give you an idea of Blockstream; It has hired most of the main and active bitcoin developers and is now synonymous with the "Core" bitcoin development team. They AFAIK no products at all. They have received around $75m in funding. Every single thing they do is supported by theymos. They have started implementing an entirely new economic system for bitcoin against the will of its users and have blocked any and all attempts to scaling the network in line with the original vision.
Although this comment is ridiculously long, it really only covers the tip of the iceberg. You could write a book on the last two years of bitcoin. The things that have been going on have been mind-blowing. One last thing that I think is worth talking about is u/bashco's claim of vote manipulation.
The users that the video talks about have very very large numbers of downvotes mostly due to them having a very very high chance of being astroturfers. Around about the same time last year when Blockstream came active on the scene, every single bitcoin troll disappeared, and I mean literally every single one. In the years before that, there were a large number of active anti-bitcoin trolls. They even have an active sub buttcoin. Up until last year, you could go down to the bottom of pretty much any thread in bitcoin and see many of the usual trolls who were heavily downvoted for saying something along the lines of "bitcoin is shit", "You guys and your tulips" etc. But suddenly last year they all disappeared. Instead, a new type of bitcoin user appeared. Someone who said they were fully in support of bitcoin but they just so happened to support every single thing Blockstream and its employees said and did. They had the exact same tone as the trolls who had disappeared. Their way of talking to people was aggressive, they'd call people names, they had a relatively poor understanding of how bitcoin fundamentally worked. They were extremely argumentative. These users are the majority of the list of that video. When the 10's of thousands of users were censored and expelled from bitcoin they ended up congregating in btc. The strange thing was that the users listed in that video also moved over to btc and spend all day every day posting troll-like comments and misinformation. Naturally, they get heavily downvoted by the real users in btc. They spend their time constantly causing as much drama as possible. At every opportunity, they scream about "censorship" in btc while they are happy about the censorship in bitcoin. These people are astroturfers. What someone somewhere worked out, is that all you have to do to take down a community is say that you are on their side. It is an astoundingly effective form of psychological attack."
submitted by clubbnbabyseals to btc [link] [comments]

Top 100 Albums Of The Decade I Track 17 TOP 100 I 2010 ... OKLMofficial - YouTube Garrison's NCLEX Tutoring - YouTube Vidéos SEO Abondance - YouTube

Bitcoin Meta your communities . Sign up or log in to customize your list. ... For example, suggest “bike” as a synonym for bicycle, or “sock” for socks. The following tags will be remapped to scalability. scaling. see all tag synonyms » Users with more than 1250 reputation and a total answer score of 5 or more on the tag, can suggest tag synonyms. Users with a total answer score ... Bitcoin is also considered as a synonym for cryptocurrencies by many. Such is the popularity of Bitcoin worldwide. While Ethereum price, Tron price, EOS price and more are trying to match up with the pace of bitcoin, IOTA is one of them. Limitation in scaling and higher fees for transactions are major setbacks for the successful cryptocurrency till date known as Bitcoin. Scalability is a characteristic of a system, model or function that describes its capability to cope and perform under an increased or expanding workload. A system that scales well will be able to ... The Bitcoin network has scalability problems. To increase its transaction rate and speed, micropayment channel networks have been proposed; however, these require to lock funds into specific channels. Moreover, the available space in the blockchain does not allow scaling to a worldwide payment system. We propose a new layer that sits in between the blockchain and the payment channels. The new ... Tag synonyms for scalability. Incorrectly tagged questions are hard to find and answer. If you know of common, alternate spellings or phrasings for this tag, add them here so we can automatically correct them in the future. For example, suggest “bike” as a synonym for bicycle, or “sock” for socks. scalability currently has no approved synonyms. see all tag synonyms » Users with more ...

[index] [49260] [42515] [24425] [19163] [40494] [18709] [493] [41955] [24300] [8896]

Top 100 Albums Of The Decade I Track 17 TOP 100 I 2010 ...

Solfeggio 852 Hz is directly connected to the principle of Light, and Light is a higher form of bioenergy.This frequency can be used as means for opening up ... For tutoring please call 856.777.0840 I am a registered nurse who helps nursing students pass their NCLEX. I have been a nurse since 1997. I have worked in a lot of nursing fields and I truly love ... Project Update: Icon (ICON) the Decentralized Network of Blockchain Communities Basics The goal of ICON is to allow entities and individuals from multiple di... A supercut of the very best 100 albums from the last decade. All the music and images belong the artists and labels. This video is only there to promote the ... Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

#